329 resultados para conductive glass
Resumo:
The aim of this study was to evaluate in vitro the antimicrobial activity of glass ionomer (GIC) and zinc oxide-eugenol (ZOE) cements against Candida albicans. Standardized GIC and ZOE specimens were maintained in contact with C. albicans suspension (1 x 10(6) cells/ml) at 37 degrees C for 24 h, 48 h or 7 days. A control group without any testing cement was included. After the incubation period, aliquots of 0.1 ml were plated on Sabouraud's agar, and then the number of colonies was counted. The results were expressed as values of logarithms of colony-forming units per milliliter (log CFU/mL) and were analyzed statistically by Kruskal-Wallis ANOVA. After 48 h of incubation, the ZOE group presented no growth of C. albicans. GIC and control groups presented similar mean values at all tested periods. According to the results obtained, it could be concluded that, under the experimental conditions, ZOE cement was more effective in vitro against C. albicans than GIC.
Resumo:
This study evaluated the antibacterial activity of the glass-ionomer cements Vitrebond (3M ESPE), Ketac Molar (3M ESPE) and Fuji IX (GC America) against S mutans, S sobrinus, L acidophilus and A viscosus, using the agar diffusion test. Inocula were obtained by the seed of indicators cultures in BHI broth incubated at 37°C for 24 hours. Base layers containing 15 mL of BHI agar and 300 μL of each bacteria suspension were prepared in Petri dishes. Six wells measuring 4 mm in diameter were made in each plate and completely filled with one of the testing materials. A 0.2% chlorhexidine solution applied in round filter papers was used as control. Tests were performed 12 times for each material and bacteria strain. After incubation of the plates at 37°C for 24 hours, the zones of bacterial growth inhibition around the wells were measured. Overall, the results showed the following sequence of antibacterial activity: Vitrebond (despite the activation mode) > 0.2% chlorhexidine > Ketac Molar > Fuji IX, according to Kruskal-Wallis and Mann-Whitney statistical tests. This study confirmed significant antibacterial activity for two conventional glass-ionomers and one resin-modified glass-ionomer material. The resin-modified glass-ionomer cement Vitrebond, regardless of the activation mode, presented the best antibacterial activity against S mutans and S sobrinus. The antibacterial activity against A viscosus for Vitrebond was similar to 0.2% chlorhexidine, while light activation reduced its antibacterial activity against L acidophilus. ©Operative Dentistry, 2005.
Resumo:
Objective: The purpose of this study was to histologically analyze the influence of bioactive glass and/or a calcium sulfate barrier on bone healing in surgically created defects in rat tibias. Material and methods: Sixty-four rats were divided into 4 groups: C (control), CS (calcium sulfate), BG (bioactive glass), and BG/CS (bioactive glass/calcium sulfate). A surgical defect was created in the tibia of each animal. In Group CS, a calcium sulfate barrier was placed to cover the defect. In Group BG the defect was filled with bioactive glass. In Group BG/CS, it was filled with bioactive glass and protected by a barrier of calcium sulfate. Animals were sacrificed at 10 or 30 days post-operative. The formation of new bone in the cortical area of the defect was evaluated histomorphometrically. Results: At 10 days post-operative, Group C presented significantly more bone formation than Groups CS, BG, or BG/CS. No statistically significant differences were found between the experimental groups. At 30 days post-operative, Group C demonstrated significantly more bone formation than the experimental groups. Groups CS and BG/CS showed significantly more bone formation than Group BG. No statistically significant differences were found between Group CS and BG/CS. Conclusions: (a) the control groups had significantly more bone formation than the experimental groups; (b) at 10 days post-operative, no significant differences were found between any of the experimental groups; and (c) at 30 days post-operative, the groups with a calcium sulfate barrier had significantly more bone formation than the group that used bioactive glass only. Copyright © Blackwell Munksgaard 2005.
Resumo:
This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Thirty blocks (5×5×4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR, VITA) were fabricated according to the manufacturer's instructions and duplicated in resin composite. The specimens were polished and assigned to one of the following three treatment conditions (n=10): (1) Airborne particle abrasion with 110 μm Al2O3 particles + silanization, (2) Silica coating with 110 μm SiOx particles (Rocatec Pre and Plus, 3M ESPE) + silanization, (3) Silica coating with 30 μm SiOx particles (CoJet, 3M ESPE) + silanization. The ceramic-composite blocks were cemented with the resin cement (Panavia F) and stored at 37 °C in distilled water for 7 days prior to bond tests. The blocks were cut under coolant water to produce bar specimens with a bonding area of approximately 0.6 mm2. The bond strength tests were performed in a universal testing machine (cross-head speed: 1 mm/min). The mean bond strengths of the specimens of each block were statistically analyzed using ANOVA and Tukey's test (α≤0.05). Silica coating with silanization either using 110 μm SiOx or 30 μm SiOx particles increased the bond strength of the resin cement (24.6±2.7 MPa and 26.7±2.4 MPa, respectively) to the zirconia-based ceramic significantly compared to that of airborne particle abrasion with 110-μm Al2O3 (20.5±3.8 MPa) (ANOVA, P<0.05). Conditioning the INC-ZR ceramic surfaces with silica coating and silanization using either chairside or laboratory devices provided higher bond strengths of the resin cement than with airborne particle abrasion using 110 μm Al2O3. © 2005 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
In this report we investigate the optical properties and energy-transfer upconversion luminescence of Ho3+- and Tb3+/Yb 3+-codoped PbGeO3-PbF2-CdF2 glass-ceramic under infrared excitation. In Ho3+/Yb 3+-codoped sample, green(545 nm), red(652 nm), and near-infrared(754 nm) upconversion luminescence corresponding to the 4S 2(5F4) → 5I8, 5F5 → 5I8, and 4S2(5F4) → 5I 7, respectively, was readly observed. Blue(490 nm) signals assigned to the 5F2,3 → 5I8 transition was also detected. In the Tb3+/Yb3+ system, bright UV-visible emission around 384, 415, 438, 473-490, 545, 587, and 623 nm, identified as due to the 5D3(5G6) → 7FJ(J=6,5,4) and 5D4→ 7FJ(J=6,5,4,3) transitions, was measured. The comparison of the upconversion process in glass ceramic and its glassy precursor revealed that the former samples present much higher upconversion efficiencies. The dependence of the upconversion emission upon pump power, and doping contents was also examined. The results indicate that successive energy-transfer between ytterbium and holmium ions and cooperative energy-transfer between ytterbium and terbium ions followed by excited-state absorption are the dominant upconversion excitation mechanisms herein involved. The viability of using the samples for three-dimensional solid-state color displays is also discussed.
Resumo:
Purpose: To evaluate the fatigue resistance of the bond between dentin and glass-infiltrated alumina ceramic, using different luting protocols. Materials and Methods: The null hypothesis is that the fatigue resistance varies with the luting strategy. Forty blocks of In-Ceram Alumina were prepared, and one surface of each block was abraded with 110-μm aluminum oxide particles. Then, the blocks were luted to flat dentin surfaces of 40 human third molars, using 4 different luting strategies (luting system [LS]/ceramic surface conditioning [CSC]) (n=10): (G1) [LS] RelyX-Unicem/[CSC] airborne abrasion with 110-μm Al2O3 particles; (G2) [LS] One-Step + Duo-Link (bis-GMA-based resin)/[CSC] etching with 4% hydrofluoric acid + silane agent; (G3) [LS] ED-Primer + Panavia F (MDP-based resin)/[CSC] Al2O 3; (G4) [LS] Scotchbond1+RelyX-ARC (bis-GMA-based resin)/[CSC] chairside tribochemical silica coating (air abrasion with 30-μm SiO x particles + silane). After 24 h of water storage at 37°C, the specimens were subjected to 106 fatigue cycles in shear with a sinusoidal load (0 to 21 N, 8 Hz frequency, 37°C water). A fatigue survivor score was given, considering the number of the fatigue cycles until fracture. The failure modes of failed specimens were observed in a SEM. Results: G3 (score = 5.9, 1 failure) and G4 (score = 6, no failures) were statistically similar (p = 0.33) and had significantly higher fatigue resistance than G1 (score = 3.9, 5 failures) and G2 (score = 3.7, 6 failures) (p < 0.03). SEM analysis of fractured specimens of G1 and G2 showed that almost all the failures were between ceramic and cement. Conclusion: The MDP-based resin cement + sandblasting with Al2O3 particles (G3) and bis-GMA-based resin cement + tribochemical silica coating (G4), both using the respective dentin bonding systems, were the best luting protocols for the alumina ceramic. The null hypothesis was confirmed.
Resumo:
Blue and ultraviolet luminescence in (Pr3+, Gd3+) doped fluoroindate glass is studied for excitation in the red region (≈590 nm). Frequency upconversion (UC) is observed due to energy transfer (ET) among three Pr3+ ions initially excited to the D21 state corresponding to the ET process D21 + D21 + D21 → S01 + H53 + H53. Additionally, UC luminescence from states P 72 6 and I 72 6 of Gd3+ is observed for an excitation wavelength resonant with transitions of the Pr3+ ions. The characterization of the luminescence signals allowed to determine ET rate among the Pr3+ ions and provides evidence of interconfigurational ET between Gd3+ and Pr3+ ions. © 2006 American Institute of Physics.
Resumo:
Differential scanning calorimetry (DSC) was used to determine phase transitions of freeze-dried plums. Samples at low and intermediate moisture contents, were conditioned by adsorption at various water activities (0.11≤a w≤0.90) at 25°C, whereas in the high moisture content region (a w>0.90) samples were obtained by direct water addition, with the resulting sorption isotherm being well described by the Guggenheim-Anderson-deBoer (GAB) model. Freeze-dried samples of separated plum skin and pulp were also analysed. At a w≤0.75, two glass transitions were visible, with the glass transition temperature (T g) decreasing with increasing a w due to the water plasticising effect. The first T g was attributed to the matrix formed by sugars and water. The second one, less visible and less plasticised by water, was probably due to macromolecules of the fruit pulp. The Gordon-Taylor model represented satisfactorily the matrix glass transition curve for a w≤0.90. In the higher moisture content range T g remained practically constant around T g′ (-57.5°C). Analysis of the glass transition curve and the sorption isotherm indicated that stability at a temperature of 25°C, would be attained by freeze dried plum at a water activity of 0.04, corresponding to a moisture content of 12.9% (dry basis). © 2006 SAGE Publications.
Resumo:
Objective: The aim of this in vitro study was to evaluate the cytotoxicity of resin-modified glass-ionomer lining cements submitted to different curing regimes and applied to an immortalized odontoblast-cell line (MDPC-23). Methods: Forty round-shaped specimens of each experimental material (Fuji Lining LC and Vitrebond) were prepared. They were light-cured for the manufacturers' recommended time (MRT = 30 s), under-cured (0.5 MRT = 15 s), over-cured (1.5 MRT = 45 s) or allowed to dark cure (0 MRT). Sterilized filter papers soaked with either 5 μL of PBS or HEMA were used as negative and positive control, respectively. After placing the specimens individually in wells of 24-well dishes, odontoblast-like cells MDPC-23 (30,000 cells/cm2) were plated in each well and incubated for 72 h in a humidified incubator at 37 °C with 5% CO2 and 95% air. The cytotoxicity was evaluated by the cell metabolism (MTT assay) and cell morphology (SEM). Results: Fuji Lining LC was less cytotoxic than Vitrebond (p < 0.05) in all the experimental conditions. However, the cytotoxicity of Fuji Lining LC was noticeably increased in the absence of light-curing while the same was not observed for Vitrebond. The length of light-curing (15, 30 or 45 s) did not influence the toxicity of both lining materials when they were applied on the odontoblast-cell line MDPC-23. Significance: The light-activation plays an important role in reducing the cytotoxicity of Fuji Lining LC. Following the manufacturer' recommendation regarding the light-curing regime may prevent toxic effect to the pulp cells. © 2005 Academy of Dental Materials.
Resumo:
The purpose of this study was to evaluate the surface roughness of four conventional chemically cured glass ionomer cements (Fuji IX, Ketac Molar, Vidrion R and Vitromolar) commonly used in atraumatic restorative treatment (ART) immediately after material preparation. Twenty specimens of each glass ionomer cement were fabricated and surface roughness was measured after material setting. The specimens were further examined under scanning electron microscopy. Data were analyzed statistically by Kruskal-Wallis test and Mann-Whitney test at 5% significance level. Two-by-two comparisons showed statistically significant difference (p<0.05) between all materials, except for Ketac Molar and Vidrion R, which had statically similar results (p>0.05). Regarding their results of surface roughness, the materials can be presented in a crescent order, as follows: Ketac Molar < Vidrion R < Fuji IX < Vitromolar. In conclusion, from the tested glass ionomer cements, Fuji IX, Ketac Molar and Vidrion R presented acceptable surface roughness after setting reaction while Vitromolar showed remarkably higher surface roughness.
Resumo:
Objective: The purpose of this study was to analyze histologically the influence of bioactive glass (BG) with or without a calcium sulfate (CS) barrier on bone healing in surgically created critical-size defects (CSD) in rat calvaria. Material and methods: A CSD was made in each calvarium of 48 rats. They were divided into three groups: C (control): blood clot only; BG: defect filled with BG; and BG/CS: defect filled with BG covered by a CS barrier. Animals were euthanized at 4 or 12 weeks. Formation of new bone was evaluated histomorphometrically. Results: No defect completely regenerated with bone. BG particles were observed in Groups BG and BG/CS at both periods of analysis. The thickness throughout the healing area in Groups BG and BG/CS was similar to the original calvarium, while Group C presented a thin connective tissue in the center of the defect in both periods of analysis. At 4 weeks, Groups C and BG/CS presented significantly more bone formation than Group BG. No significant differences were found between Groups C and BG/CS. At 12 weeks, no significant differences in the amount of bone formation were observed among the three groups. When comparing 4 and 12 weeks, there was a significant increase in new bone formation within groups BG and BG/CS, but not C. Conclusion: BG particles, used with or without a CS barrier, maintained the volume and contour of the area grafted in CSD. However, they did not lead to a significant difference in bone formation when compared with control at 12 weeks post-operative. © 2007 Blackwell Munksgaard.
Resumo:
Studies of the third harmonic of the AC-susceptibility were conducted to detect the boundaries of the linear regime of the magnetic response of granular Nb samples. These studies reveal the extent of the region, on the phase diagram, where the magnetic response is linear, which corresponds to the disordered phase of Vortex Matter. The present work addresses the correlation between a linear response and experimental parameters such as the frequency and the amplitude of the excitation field. The order-disorder border has been extracted from the onset temperature of the third harmonic measured at low-frequencies and low-excitation fields in the presence of dc magnetic fields. © 2008 IOP Publishing Ltd.
Resumo:
Visible photoluminescence was generated in standard soda-lime-silica glass powder, mechanically milled in a high-energy attrition mill. The broad emission band maximum shows a linear dependence on the exciting wavelength, suggesting the possibility to tune the PL emission. The photoluminescence was attributed to defect generation related to unsatisfied chemical bonds due to the high surface area. Raman scattering and ultraviolet-visible optical reflectance measurements corroborate this assertion. Transmission electron microscopy measurements indicate that the powder is composed by nanocrystallites with about 10-20 nanometers immersed in an amorphous media.
Resumo:
This study sought to investigate the surface roughness and the adherence of Streptococcus mutans (in the presence and absence of saliva) to ceramics and composites. The early dental biofilms formed in situ on the materials were illustrated, using scanning electron microscopy (SEM). Feldspathic and leucite/feldspathic ceramics and microhybrid and microfilled composites were evaluated. Human dental enamel was used as the control. Standardized specimens of the materials were produced and surface roughness was analyzed. The adhesion tests were carried out in 24-well plates and colony forming units (CFU/mL) were evaluated. Values of roughness (μm) and adherence (CFU/mL) were analyzed statistically. Of all the surfaces tested, enamel was the roughest. Leucite/feldspathic ceramics were rougher than the feldspathic ceramic, while composites were similar statistically. Enamel offered the highest level of adherence to uncoated and saliva-coated specimens, while the leucite/feldspathic ceramic demonstrated greater adherence than the feldspathic ceramic and the composites were similar statically. The rougher restorative materials increased the adherence of S, mutans on the material surfaces.
Resumo:
The aim of this study was to assess the microhardness of 5 glass ionomer cements (GIC) - Vidrion R (V, SS White), Fuji IX (F, GC Corp.), Magic Glass ART (MG, Vigodent), Maxxion R (MR, FGM) and ChemFlex (CF, Dentsply) - in the presence or absence of a surface protection treatment, and after different storage periods. For each GIC, 36 test specimens were made, divided into 3 groups according to the surface protection treatment applied - no protection, varnish or nail varnish. The specimens were stored in distilled water for 24 h, 7 and 30 days and the microhardness tests were performed at these times. The data obtained were submitted to the ANOVA for repeated measures and Tukey tests (α = 5%). The results revealed that the mean microhardness values of the GICs were, in decreasing order, as follows: F > CF = MR > MG > V; that surface protection was significant for MR, at 24 h, without protection (64.2 ± 3.6a), protected with GIC varnish (59.6 ± 3.4b) and protected with nail varnish (62.7 ± 2.8ab); for F, at 7 days, without protection (97.8 ± 3.7ab), protected with varnish (95.9 ± 3.2b) and protected with nail varnish (100.8 ± 3.4a); and at 30 days, for F, without protection (98.8 ± 2.6b), protected with varnish (103.3 ± 4.4a) and protected with nail varnish (101 ± 4.1ab) and, for V, without protection (46 ± 1.3b), protected with varnish (49.6 ± 1.7ab) and protected with nail varnish (51.1 ± 2.6a). The increase in storage time produced an increase in microhardness. It was concluded that the different GICs, surface protection treatments and storage times could alter the microhardness values.