313 resultados para THERMAL GRAVIMETRIC ANALYSIS
Resumo:
The addition of calcium chloride eletrolyte to sodium polyphosphate solutions lead to Calcium polyphosphate coacervates. The effects of a thermal treatment were investigated with the objective to increase the relative stability of the obtained material. Thermogravimetry analysis indicates that coacervates became less hydrophilic and more thermally stable after the thermal treatment. Crystallization was identified through differential scanning calorimetry and X-ray diffraction. Morphological changes were observed after the thermal treatment by scanning electron microscopy. N-2 adsorption-desorption isotherms suggest that both materials, thermally treated or not, display type IV isotherms, low superficial area and mesoporous structure. Stability experiments in solutions at different pH values show that the thermally treated calcium polyphosphate is relatively more stable than the non-treated coacervate.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work, spinels with the general formula Zn2-xCoxTiO4 were synthesized by the polymeric precursor method and thermally treated at 1,000 A degrees C. The powder precursors were characterized by TG/DTA. A decrease in the DTA peak temperature with the amount of zinc was observed. After the thermal treatment, the characterizations were performed by XRD, IR, colorimetry and UV/VIS spectroscopy. The XRD patterns of all the samples showed the presence of the spinel phase. Infrared spectroscopy showed the presence of ester complexes for Zn2TiO4 after thermal treatment at 500 A degrees C, which disappeared after cobalt addition, indicating that organic material elimination was favored.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Synthesis, characterization, and thermal behavior of transition metal oxamates, M(NH(2)C(2)O(3))(2)center dot nH(2)O (M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II)), as well as the thermal behavior of oxamic acid and its sodium salt (NaNH(2)C(2)O(3)) were investigated employing simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC), experimental and theoretical infrared spectroscopy, TG-DSC coupled to FTIR, elemental analysis and complexometry. The results led to information about the composition, dehydration, thermal stability, thermal decomposition, as well as of the gaseous products evolved during the thermal decomposition of these compounds in dynamic air and N(2) atmospheres.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Studies on double selenates. I. Thermal decomposition of lanthanum and alkali metal double selenates
Resumo:
Thermogravimetry, differential thermal analysis and other methods of analysis have been used to study the decomposition of hydrated lanthanum and alkali metal double selenates up to 1300°C. The results showed slight variations in the initial temperature of the various intermediate decomposition stages of the double selenates, as compared with the initial temperature of the corresponding decomposition of the simple selenates. The results also permitted the suggestion of mechanisms of thermal decomposition of these compounds. © 1980.
Resumo:
Hydrated lanthanide(III) and yttrium(III) selenites were prepared. Simultaneous thermogravimetric and differential thermal analysis, classical differential thermal analysis, X-ray diffraction and other methods of analysis have been used in the characterisation as well as in the study of the thermal decomposition of these compounds. The results led to the composition and thermal stability and also to interpretations concerning the thermal decomposition mechanisms. © 1990.
Resumo:
This paper describes two simple thermal methods for measuring the energy fluence in J/cm 2 from a diagnostic x-ray exposure. Both detectors absorb essentially 100% of the radiation and give a signal that is directly proportional to the energy fluence of the x-ray beam. One detector measures the thermal effect when a pulse of x rays is totally absorbed in the pyroelectric detector of lead-zirconium-titanate (PZT). The other detector measures the expansion of a gas surrounding a lead disk detector in a photoacoustic chamber. The increased pressure of the gas is transmitted through a 1-mm duct to a sensitive microphone. Both detectors have previously been used to measure the energy fluence rate of continuous x-ray beams in the same energy region using a chopped beam and a lock-in amplifier. Measurement of the energy fluence of a pulse of radiation eliminates the need for the beam chopper and lock-in amplifier and results in a simple, rugged, and inexpensive dosimeter. Either method can be combined with the area of the beam to give an estimate of the imparted energy to the patient from a diagnostic x-ray exposure.
Resumo:
The effect of the electrolyte (NH+ 4, Cl-) on the drying of SnO2 hydrogels was investigated by linear shrinkage, mass loss, gravimetric thermal analysis and infrared spectroscopy. Results show that the drying mechanism for monolithic SnO2 gels is highly dependent on the concentration of the electrolyte solution inside the pores. For higher concentrations, the drying process is governed by capillary forces while for the smaller ones (≤20 mM) syneresis shrinkage becomes predominant just before the end of the first drying period. This phenomenon is related to condensation reaction among the superficial OH groups and may hamper formation of monolithic SnO2. © 1992 Elsevier Science Publishers B.V. All rights reserved.
Resumo:
Heat recovery devices are important in the optimization of thermal systems, since they can be used to reduce thermal losses to the environment. The use of heat pipes in these types of equipment can provide heat recoveries of higher efficiency, since both fluid flows are external and there are less contamination risks between the hot and cold fluids. The objective of this work is to study a heat recovery unit constructed with heat pipes and mainly, to analyze the influence of the inclination of the heat pipes on the performance of the equipment. For this analysis, a heat recovery unit was constructed which possesses 48 finned heat pipes in triangular geometry, the evaporator and condenser being of the same length. This unit was tested in an air-air system simulating a heat recovery process in which heat was supplied to the hot fluid by electrical resistances. The results have shown that there exists an inclination at which the system has a better performance, but for higher inclinations there is no significant increase of the efficiency of the system. This paper also presents the influence of inclination of heat pipes on effectiveness and NTU parameters which are important in heat exchanger design.