389 resultados para dielectric thin films
Resumo:
Lithium tantalate (LiTaO3) thin films with 50:50 stoichiometry were deposited on silicon (100) substrates with two layers by the spin coating method using a polymeric organic solution. In order to study the influence of preannealing on the crystallinity, microstructure, grain size and roughness of the final film, two annealing procedures, slow preannealing and fast preannealing, were used. X-ray diffraction (XRD) results showed that LiTaO3 thin films are polycrystalline. It was observed by scanning electron microscopy (SEM) that the thin film, which had been thermally treated using slow preannealing, was characterized by a dense and homogeneous surface. The atomic force microscopy (AFM) studies showed that the roughness is strongly influenced by preannealing temperature. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Lithium tantalate (LiTaO3) thin films with (50:50) stoichiometry were prepared using polymeric organic solution. The 5-layered films were deposited on silicon (100) substrates by spin coating method. The coated substrates were thermally treated at 500degreesC for 3 h under several oxygen atmospheres in order to study the influence of oxygen flow on the crystallinity, microstructure, grain size and roughness of the final film. X-ray diffraction results showed that an oxygen flow of 100 cm(3)/min leads to LiTaO3 thin films with higher crystallinity, without preferential orientation. It was observed by scanning electron microscopy (SEM) that the thickness of thin films decreases when the oxygen flow increases. The atomic force microscopy (AFM) studies showed that the grain size and roughness are strongly influenced by oxygen flow.
Resumo:
Polymeric precursor solution was used to deposit by spin-coating pure and Mg doped LiNbO3 thin films on sapphire substrates. The effects of magnesium addition on crystallinity, morphology and optical properties of the annealed films were investigated. X-ray diffraction patterns indicate the oriented growth of the films. AFM studies show that the films are very homogeneous, dense and present smooth surfaces. The refractive index and optical losses obtained by the prism coupling method were influenced by the magnesium addition.
Resumo:
We report a study of residual stress in PbTiO3 (PT) thin films prepared on Si substrates by a polymeric chemical method. The E(1TO) frequency was used to evaluate the residual stress through an empirical equation available for bulk PT. We find that the residual stress in PT films increases as the film thickness decreases and conclude that it originates essentially from the contributions of extrinsic and intrinsic factors. Polarized Raman experiments showed that the PT films prepared by a polymeric chemical method are somewhat a-domain (polar axis c parallel to the substrate) oriented.
Resumo:
The ferroelectric properties and leakage current mechanisms of preferred oriented Bi3.25La0.75Ti3O12 (BLT) thin films deposited on La0.5Sr0.5CoO3 by the polymeric precursor method were investigated. These films showed excellent ferroelectric properties in terms of large remnant polarization (2P(r)) of 47.6 mu C/cm(2) and (2E(c)) of 55 kV/cm, fatigue-free characteristics up to 10(10) switching cycles, and a current density of 0.7 mu A/cm(2) at 10 kV/cm. X-ray diffraction and scanning electron microscope investigations indicate that the deposited films exhibit a dense, well-crystallized microstructure having random orientations and with a rather smooth surface morphology. The improved ferroelectric and leakage current characteristics can be ascribed to the platelike grains of the BLT films, which make the domain walls easier to be switched under external field.
Resumo:
BiFeO3 (BFO) thin films were fabricated on Pt(111)/Ti/SiO2/Si substrates by using a polymeric precursor solution under appropriate crystallization conditions. The capacitance dependence on voltage is strongly nonlinear, confirming the ferroelectric properties of the films resulting from the domain switching. The leakage current density increases with annealing temperature. The polarization electric field curves could be obtained in BFO films annealed at 500 degrees C, free of secondary phases. X-ray photoelectron spectroscopy spectra of films annealed at 500 degrees C indicated that the oxidation state of Fe was purely 3+, demonstrating that our films possess stable chemical configurations. (c) 2007 American Institute of Physics.
Resumo:
In order to investigate optically excited electronic transport in Er-doped SnO2, thin films are excited with the fourth harmonic of an Nd:YAG laser (266nm) at low temperature, yielding conductivity decay when the illumination is removed. Inspection of these electrical characteristics aims knowledge for electroluminescent devices operation. Based on a proposed model where trapping defects present thermally activated cross section, the capture barrier is evaluated as 140, 108, 100 and 148 meV for doped SnO2, thin films with 0.0, 0.05, 0. 10 and 4.0 at% of Er, respectively. The undoped film has vacancy levels as dominating, whereas for doped films. there are two distinct trapping centers: Er3+ substitutional at Sn lattice sites and Er3+ located at grain boundary. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Electrical conductive textured LaNiO3/SrTiO3 (100) thin films were successfully produced by the polymeric precursor method. A comparison between features of these films of LaNiO3 (LNO) when heat treated in a conventional furnace (CF) and in a domestic microwave (MW) oven is presented. The x-ray diffraction data indicated good crystallinity and a structural orientation along the (h00) direction for both films. The surface images obtained by atomic force microscopy revealed similar roughness values, whereas films LNO-MW present slightly smaller average grain size (similar to 80 nm) than those observed for LNO-CF (60-150 nm). These grain size values were in good agreement with those evaluated from the x-ray data. The transport properties have been studied by temperature dependence of the electrical resistivity rho(T) which revealed for both films a metallic behavior in the entire temperature range studied. The behavior of rho(T) was investigated, allowing to a discussion of the transport mechanisms in these films. (C) 2007 American Institute of Physics.
Resumo:
Stoichiometric CaWO4 and SrWO4 thin films were synthesized using a chemical solution processing, the so-called polymeric precursor method. In this soft chemical method, soluble precursors such as strontium carbonate, calcium carbonate and tungstic acid, as starting materials, were mixed in an aqueous solution. The thin films were deposited on glass substrates by means of the spinning technique. The surface morphology and crystal structure of the thin films were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Nucleation stages and surface morphology evolution of the thin films on glass substrates were studied by atomic force microscopy. The films nucleate at 300 degreesC, after the coalescence of small nuclei into larger grains yielding a homogeneous dense surface. XRD characterization of these films showed that the CaWO4 and SrWO4 phases crystallize at 400 degreesC from an inorganic amorphous phase. No intermediate crystalline phase was identified. The optical properties were also studied. It was found that CaWO4 and SrWO4 thin films have an optical band gap, E-gap=5.27 and 5.78 eV, respectively, of a direct transition nature. The excellent microstructural quality and chemical homogeneity confirmed that this soft solution processing provides an inexpensive and environmentally friendly route for the preparation of CaWO4 and SrWO4 thin films. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Polycrystalline tin oxide thin films were prepared from ethanol solution of SnCl2.H2O (concentrations: 0.05, 0.1, 0.2 and 0.4 mol/dm(3)) at different substrate temperatures ranging from 300 to 450 degreesC. The kinetic deposition processes were studied in terms of various process parameters. The crystal phases, crystalline structure, grain size and surface morphology are revealed in accordance to X-ray diffractometry and scanning electron microscopy (SEM). Texture coefficients (TCs) for (110), (2 0 0), (2 11) and (3 0 1) reflections of the tetragonal SnO2 were calculated. Structural characteristics of deposited films with respect to varying precursor chemistry and substrate temperature are presented and discussed. (C) 2003 Published by Elsevier B.V.
Resumo:
This work reports the preparation and characterization of (SnO2) thin films doped with 7 mol% Sb2O3. The films were prepared by the polymeric precursor method, and deposited by spin-coating, all of them were deposited on amorphous silica substrate. Then, we have studied the thickness effect on the microstrutural, optical and electric properties of these samples. The microstructural characterization was carried out by X-ray diffraction (XRD) and scanning tunneling microscopy (STM). The electrical resistivity measurements were obtained by the van der Pauw four-probe method. UV-visible spectroscopy and ellipsometry were carried out for the optical characterization. The films present nanometric grains in the order of 13 nm, and low roughness. The electrical resistivity decreased with the increase of the film thickness and the smallest measured value was 6.5 x 10(-3) Omega cm for the 988 nm thick film. The samples displayed a high transmittance value of 80% in the visible region. The obtained results show that the polymeric precursor method is effective for the TCOs manufacturing.
Resumo:
Glassy films of Ga10Ge25S65 with 4 mu m thickness were deposited on quartz substrates by electron beam evaporation. Photoexpansion (PE) (photoinduced increase in volume) and photobleaching (PB) (blue shift of the bandgap) effects have been examined. The exposed areas have been analyzed using perfilometer and an expansion of 1.7 mu m (Delta V/V approximate to 30%) is observed for composition Ga10Ge25S65 exposed during 180 min and 3 mW/cm(2) power density. The optical absorption edge measured for the film Ge25Ga10S65 above and below the bandgap show that the blue shift of the gap by below bandgap photon illumination is considerable higher (Delta E-g = 440 meV) than Delta E-g induced by above bandgap illumination (Delta E-g = 190 meV). The distribution of the refraction index profile showed a negative change of the refraction index in the irradiated samples (Delta n = -0.6). The morphology was examined using a scanning electron microscopy (SEM). The chemical compositions measured using an energy dispersive analyzer (EDX) indicate an increase of the oxygen atoms into the irradiated area. Using a Lloyd's mirror setup for continuous wave holography it was possible to record holographic gratings using the photoinduced effects that occur in them. Diffraction efficiency up to 25% was achieved for the recorded gratings and atomic force microscopy images are presented. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Crack-free polycrystalline PLZT (Pb,a)(Zr,Ti)O-3 thin films with the perovskite structure were prepared by dir-coating using the Pechinis process. Lead acetate, hydrated lanthanum carbonate, zirconium n-propoxide and titanium isopropoxide were used as raw materials. The viscosity of the solution was adjusted in the range of 20 to 56 cP and the films were deposited by a dip-coating process on silicon (100) as substrate. Solutions with ionic concentration of 0.1 and 0.2 M were used. Thin film deposition was accomplished by dipping the substrates in the solution with control of withdrawal speed from 5 to 20 mm/min. The thin films were thermally treated in two steps: at 300 degreesC amid 650 degreesC. The influence of withdrawal speed. viscosity, heating rate and ionic concentration on the morphology of PLZT thin film was discussed. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Photoexpansion and photobleaching effects have been observed in amorphous GeS2 + Ga2O3 (GGSO) thin films, when their surfaces were exposed to UV light. The photoinduced changes on the surface of the samples are indications that the structure has been changed as a result of photoexcitation. In this paper, micro-Raman, energy dispersive X-ray analysis (EDX) and backscattering electrons (BSE) microscopy were the techniques used to identify the origin of these effects. Raman spectra revealed that these phenomena are a consequence of the Ge-S bonds' breakdown and the formation of new Ge-O bonds, with an increase of the modes associated with Ge-O-Ge bonds and mixed oxysulphide tetrahedral units (S-Ge-O). The chemical composition measured by EDX and BSE microscopy images indicated that the irradiated area is oxygen rich. So, the present paper provides fundamental insights into the influence of the oxygen within the glass matrix on the considered photoinduced effects. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)