242 resultados para Regular Linear System
Resumo:
This paper addresses the H ∞ state-feedback control design problem of discretetime Markov jump linear systems. First, under the assumption that the Markov parameter is measured, the main contribution is on the LMI characterization of all linear feedback controllers such that the closed loop output remains bounded by a given norm level. This results allows the robust controller design to deal with convex bounded parameter uncertainty, probability uncertainty and cluster availability of the Markov mode. For partly unknown transition probabilities, the proposed design problem is proved to be less conservative than one available in the current literature. An example is solved for illustration and comparisons. © 2011 IFAC.
Resumo:
This study evaluated using of Multicriteria Evaluation in a GIS, specifically by Weighted Linear Combination Method for generation of map of priority areas for forest restoration in the initial part of River Pardo Basin, SP, in order to water resources conservation. Aiming to define criteria and restrictions it was used Participatory Techniques, and the following factors had been selected: proximity of the hydrographic network, proximity of forest cover, slope and erodibility of soil. To calculate the weight to each factor it was used the decision-making process, known as Analytic Hierarchy Analysis, this method consists of a paired comparison of factors to determine the relative importance of each. According to Weighted Linear Combination, the very high priority areas have a more limited spatial distribution, with an apparent concentration around the water bodies, outlining a buffer to the river system. The proximity factor of the hydrographic network, and enables the connection forestry, contributed, along with the factor of proximity to forest cover, so there would be the definition of most of the areas with the highest priority in the basin, which concentrate the largest areas of forest and native riparian areas along the hydrographic.
Resumo:
This paper deals with exponential stability of discrete-time singular systems with Markov jump parameters. We propose a set of coupled generalized Lyapunov equations (CGLE) that provides sufficient conditions to check this property for this class of systems. A method for solving the obtained CGLE is also presented, based on iterations of standard singular Lyapunov equations. We present also a numerical example to illustrate the effectiveness of the approach we are proposing.
Resumo:
In trickle irrigation systems, the design is based on the pre-established emission uniformity (EU) which is the combined result of the equipment characteristics and its hydraulic configuration. However, this desired value of the EU may not be confirmed by the final project (in field conditions) and neither by the yield uniformity. The hypotheses of this research were: a) the EU of a trickle irrigation system at field conditions is equal to the emission uniformity pre-established in the its design; b) EU has always the lowest value when compared with other indicators of uniformity; c) the discharge variation coefficient (VC) is not equal to production variation coefficient in the operational unit; d) the difference between the discharge variation coefficient and the productivity variation coefficient depends on the water depth applied. This study aimed to evaluate the relationship between EU used in the irrigation system design and the final yield uniformity. The uniformity indicators evaluated were: EU, distribution uniformity (UD) and the index proposed by Barragan & Wu (2005). They were compared estimating the performance of a trickle irrigation system applied in a citrus orchard with dimensions of 400m x 600m. The design of the irrigation system was optimized by a Linear Programming model. The tree rows were leveled in the larger direction and the spacing adopted in the orchard was 7m x 4m. The manifold line was always operating on a slope condition. The sensitivity analysis involved different slopes, 0, 3, 6, 9 and 12%, and different values of emission uniformity, 60, 70, 75, 80, 85, 90 and 94%. The citrus yield uniformity was evaluated by the variation coefficient. The emission uniformity (EU) after design differed from the EU pre-established, more sharply in the initial values lower than 90%. Comparing the uniformity indexes, the EU always generated lower values when compared with the UD and with the index proposed by Barragan. The emitter variation coefficient was always lower than the productivity variation coefficient. To obtain uniformity of production, it is necessary to consider the irrigation system uniformity and mainly the water depth to be applied.
Resumo:
This paper presents a mixed-integer linear programming approach to solving the problem of optimal type, size and allocation of distributed generators (DGs) in radial distribution systems. In the proposed formulation, (a) the steady-state operation of the radial distribution system, considering different load levels, is modeled through linear expressions; (b) different types of DGs are represented by their capability curves; (c) the short-circuit current capacity of the circuits is modeled through linear expressions; and (d) different topologies of the radial distribution system are considered. The objective function minimizes the annualized investment and operation costs. The use of a mixed-integer linear formulation guarantees convergence to optimality using existing optimization software. The results of one test system are presented in order to show the accuracy as well as the efficiency of the proposed solution technique.© 2012 Elsevier B.V. All rights reserved.
Resumo:
This work considers the vibrating system that consists of a snap-through truss absorber coupled to an oscillator under excitation of an electric motor with an eccentricity and limited power, characterizing a non-ideal oscillator. It is aimed to use the non-linearity and quasi-zero stiffness of absorber (snap-through truss absorber) to obtain a significantly attenuation the jump phenomenon. There is also an interest to exhibit the reduction of Sommerfeld effect, to confirm the saturation phenomenon occurrence and show the power transfer in a non-linear structure, evidencing the pumping energy. As shown by simulations in this work, this absorber allows the energy pumping before and during the jump phenomenon, decreasing the higher amplitudes of considered system. Additionally, the occurrence of saturation phenomenon due use of snap-through truss absorber is verified. The analysis of parameter uncertainties was introduced. Sensitivity of system with parametric errors demonstrated a trustable system. © IMechE 2012.
Resumo:
This paper investigates the most desirable configuration of a two-stage nonlinear vibration isolation system, in which the isolators contain hardening geometric stiffness nonlinearity and linear viscous damping. The force transmissibility of the system is used as the measure of the effectiveness of the isolation system. The hardening nonlinearity is achieved by placing horizontal springs onto the suspended and intermediate masses, which are supported by vertical springs. It is found that nonlinearity in the upper stage has very little effect and thus serves little purpose. The nonlinearity in the lower stage, however, has a profound effect, and can significantly improve the effectiveness of the isolation system. Further, it is found that it is desirable to have high damping in the upper stage and very low damping in the lower stage. © 2012 Elsevier Ltd.
Resumo:
This paper presents a theorem based on the hyper-rectangle defined by the closed set of the time derivatives of the membership functions of Takagi-Sugeno fuzzy systems. This result is also based on Linear Matrix Inequalities and allows the reduction of the conservatism of the stability analysis in the sense of Lyapunov. The theorem generalizes previous results available in the literature. © 2013 Brazilian Society for Automatics - SBA.
Resumo:
We construct exact solutions for a system of two coupled nonlinear partial differential equations describing the spatio-temporal dynamics of a predator-prey system where the prey per capita growth rate is subject to the Allee effect. Using the G'/G expansion method, we derive exact solutions to this model for two different wave speeds. For each wave velocity we report three different forms of solutions. We also discuss the biological relevance of the solutions obtained. © 2012 Elsevier B.V.
Resumo:
The performance of the optimal linear feedback control and of the state-dependent Riccati equation control techniques applied to control and to suppress the chaotic motion in the atomic force microscope are analyzed. In addition, the sensitivity of each control technique regarding to parametric uncertainties are considered. Simulation results show the advantages and disadvantages of each technique. © 2013 Brazilian Society for Automatics - SBA.
Resumo:
In this paper we study the behavior of a structure vulnerable to excessive vibrations caused by an non-ideal power source. To perform this study, the mathematical model is proposed, derive the equations of motion for a simple plane frame excited by an unbalanced rotating machine with limited power (non-ideal motor). The non-linear and non-ideal dynamics in system is demonstrated with a chaotic behavior. We use a State-Dependent Riccati Equation Control technique for regulate the chaotic behavior, in order to obtain a periodic orbit small and to decrease its amplitude. The simulation results show the identification by State-Dependent Riccati Equation Control is very effective. © 2013 Academic Publications, Ltd.
Resumo:
In this study, curved maxillary molar root canals were instrumented with RaCe rotary system to evaluate: 1. the occurrence of canal transportation using a radiographic platform; 2. the action of the instruments on the dentin walls, centering ability and canal enlargement by analysis of digital images; and the percentage of regular dentin surfaces and debris within the canal by histological analysis. Ten mesiobuccal roots of extracted human maxillary molars were embedded in acrylic resin and sectioned at the middle and apical thirds. Root canal shaping was performed using the RaCe rotary system at 250 rpm and 1 Ncm torque. Each instrument set was used five times according to a crowndown technique in the following sequence: 40/0.10, 35/0.08, 25/0.06, 25/0.04, 25/0.02 (working length - WL), 30/0.02 (WL) and 35/0.02 (WL). Each instrument was inserted until resistance was felt and then pulled back, followed by brushing movements towards all canal walls. Each specimen was assessed by three study methods: radiographic platform, digitized image assessment and histological analysis. The radiographic platform showed lack of apical transportation. No statistically significant difference (Wilcoxon test, p>0.05) was found between the middle and apical thirds regarding instrument action on dentin walls, centering ability, area of root canal enlargement, percentage of regular dentin surfaces and debris within the root canal. It may be concluded that RaCe system is a suitable method for the preparation of curved root canals, regarding the maintenance of root canal original path, action on dentin walls, canal enlargement and removal of debris from the root canal lumen.
Resumo:
This paper is mainly devoted to the study of the limit cycles that can bifurcate from a linear center using a piecewise linear perturbation in two zones. We consider the case when the two zones are separated by a straight line Σ and the singular point of the unperturbed system is in Σ. It is proved that the maximum number of limit cycles that can appear up to a seventh order perturbation is three. Moreover this upper bound is reached. This result confirms that these systems have more limit cycles than it was expected. Finally, center and isochronicity problems are also studied in systems which include a first order perturbation. For the latter systems it is also proved that, when the period function, defined in the period annulus of the center, is not monotone, then it has at most one critical period. Moreover this upper bound is also reached.
Resumo:
Santos-São Vicente Estuarine System is a highly populated coastal zone in Brazil and where it is located the major port of Latin America. Historically, port activities, industrial and domestic effluents discharges have constituted the main sources of contaminants to estuarine system. This study aimed to assess the recent status of sediment quality from 5 zones of Port of Santos by applying a lines-of-evidence approach through integrating results of: (1) acute toxicity of whole sediment and chronic toxicity of liquid phases; (2) grain size, organic matter, organic carbon, nitrogen, phosphorus, trace metals, polycyclic aromatic hydrocarbons, linear alkylbenzenes and butyltins; (3) benthic community descriptors. Results revealed a gradient of increasing contamination for metals and organic compounds, alongside with their geochemical carriers. Sediment liquid phases were more toxic compared to whole sediment. Low number of species and individuals indicated the impoverishment of benthic community. The use of site-specific sediment quality guidelines was more appropriate to predict sediment toxicity. The integration of results through Sediment Quality Triad approach and principal component analysis allowed observing the effects of natural stressors and dredging on sediment quality and benthic distribution. Even with recent governmental efforts to control, pollution is still relevant in Port of Santos and a threat to local ecosystems. © 2013 Elsevier Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)