237 resultados para Chromatographic Assay
Resumo:
Fluoride has widely been used in Dentistry because it is a specific and effective caries prophylactic agent. However, excess fluoride may represent a hazard to human health, especially by causing injury on genetic apparatus. Genotoxicity tests constitute an important part of cancer research for risk assessment of potential carcinogens. In this study, the potential DNA damage associated with exposure to fluoride was assessed by the single cell gel (comet) assay in vitro. Mouse lymphoma and human fibroblast cells were exposed to sodium fluoride (NaF) at final concentration ranging from 7 to 100 μg/mL for 3 h at 37μC. The results pointed out that NaF in all tested concentrations did not contribute to DNA damage as depicted by the mean tail moment and tail intensity for both cellular types assessed. These findings are clinically important because they represent a valuable contribution for evaluation of the potential health risk associated with exposure to agents usually used in dental practice.
Resumo:
Chloroform and eucalyptol are widely used in clinical dentistry as gutta-percha solvents. However, these compounds may represent a hazard to human health, especially by causing injury to genetic apparatus and/or inducing cellular death. In this study, the genotoxic and cytotoxic potentials associated with exposure to chloroform and eucalyptol were assessed on mouse lymphoma cells in vitro by the single cell gel (comet) assay and trypan blue exclusion test, respectively. Both gutta-percha solvents proved to be cytotoxic at the same levels in concentrations of 2.5, 5 and 10 μL/mL (p<0.05). On the other hand, neither of the solvents induced DNA breakage. Taken together, these results suggest that although both tested compounds (chloroform and eucalyptol) are strong cytotoxicants, it seems that they are not likely to increase the level of DNA damage on mammalian cells.
Resumo:
The clastogenic effect of the A. populnea leaves extract was tested in vivo on bone marrow cells of Wistar rats by evaluating the induction of chromosome aberrations and micronuclei induction on polychromatic erythrocytes. The extract was administered by gavage at doses of 300, 600 and 900mg/kg body weight. Experimental and control animals were submitted to euthanasia 24 h after the treatment. Under the conditions used, A. populnea leaves extract did not induce decrease in mitotic index and did not induce a statistically significant increase in the mean number of micronucleated polychromatic erythrocytes or chromosome aberrations in the bone marrow cells of Wistar rats. © 2007 The Japan Mendel Society.
Resumo:
Paracoccidioidomycosis is a systemic fungal infection caused by Paracoccidioides brasiliensis. As infectious diseases can cause DNA damage, the authors aimed at analyzing DNA breakage in peripheral blood cells of patients with paracoccidioidomycosis by using the comet assay. The results suggested that paracoccidioidomycosis does not cause genotoxicity.
Resumo:
The comet assay has been conducted with numerous cell lines to assess in vitro genotoxicity. In order to use the comet assay as part of an in vitro test for evaluating genotoxicity, however, there are cell-specific factors that need to be better understood. In this present study we have evaluated some factors that may impact upon the DNA damage detected in whole blood (WB) cells and lymphocytes (ILs). Experiments were conducted comparing responses of both cells, and investigating the effects of the female hormonal cycle, and oral contraceptive (OC) use on DNA damage detection in the in vitro comet assay, at three sampling time. No significant differences were detected in the basal levels of DNA damage detected in ILs and WB cells from women OC users and non-users and from men. Basal DNA damage in ILs was unaffected by gender and stage of the menstrual cycle or the stage of the treatment schedule. Our results also indicated that the H2O2 induces DNA damage in human lymphocytes independently of gender, low-dose OC use and hormonal fluctuation. However, data showed that in 3rd sampling of menstrual cycle, lymphocytes were more resistant to H2O2-induced DNA damage than those from OC users and men. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
Studies of the hemoglobin pattern in Brazilian reptiles are important for determining ecological and phylogenetic relationships, but they are scarce. Peripheral blood samples were obtained from 7 males and 18 females of Rhinoclemmys punctularia. The hematological profile was based on the total hemoglobin and hematocrit values. The hemoglobin profile was obtained using electrophoretic procedures at different pH, isoelectric focusing, globin chain electrophoresis, and HPLC. The hematocrit (31 ± 2%) and total hemoglobin (7.5 ± 0.2 g/dL) values did not indicate gender variations. Alkaline pH electrophoresis of the total blood samples treated with 1% saponin demonstrated the presence of four well-defined hemoglobin fractions, one major component (fraction I), showing cathodic migration and three others faster than fraction I with anodic migration. When the samples were precipitated with chloroform, only two hemoglobin fractions were observed, similar to fractions I and III from the first procedure. Isoelectric focusing and HPLC showed the same pattern. With acid and neutral pH electrophoresis, two fractions with anodic migration were observed. The globin chain identification at alkaline pH showed two fractions, but four fractions were observed at acidic pH, suggesting that different polypeptide chains are involved in the hemoglobin molecule. The chromatographic separation of the total blood sample demonstrated that the major fraction comprised 81.9% and the minor 18.1%. The results obtained demonstrated a similarity between these hemoglobin components and those of some Chelidae reported in the literature for both land and aquatic animals, reflecting the adaptation to environmental conditions. ©FUNPEC-RP.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Orbifloxacin is a fluoroquinolone with broad-spectrum antimicrobial activity, and belongs to the third generation of quinolones. Regarding the quality control of medicines, a validated microbiological assay for determination of orbifloxacin in pharmaceutical formulations has not as yet been reported. For this purpose, this paper reports the development and validation of a simple, sensitive, accurate and reproducible agar diffusion method to quantify orbifloxacin in tablet formulations. The assay is based on the inhibitory effect of orbifloxacin upon the strain of Staphylococcus aureus ATCC 25923 used as test microorganism. The results were treated statistically by analysis of variance and were found to be linear (r = 0.9992) in the selected range of 16.0-64.0 μg/mL, precise with relative standard deviation (RSD) of repeatability intraday = 2.88%, intermediate precision RSD = 3.33%, and accurate (100.31%). The results demonstrated the validity of the proposed bioassay, which allows reliable orbifloxacin quantitation in pharmaceutical samples and therefore can be used as a useful alternative methodology for the routine quality control of this medicine. © 2011 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
The validation of a microbiological assay, applying agar diffusion method for determination of the active of cefuroxime in power for injection, is described. Using a strain of Micrococcus luteus ATCC 9341 as the test organism, cefuroxime was measured in concentrations ranging from 30.0 to 120.0 μg/mL. The method validation showed that it is linear (r = 0.9999), precise (relative standard deviation = 0.37%) and accurate (it measured the added quantities). Microbiological assay is satisfactory for quantitation of cefuroxime in powder for injection and the validity of the proposed bioassay, which is a simple and a useful alternative methodology for cefuroxime determination in routine quality control.
Resumo:
Ceftriaxone sodium is a cephalosporin with broad-spectrum antimicrobial activity and belongs to the third generation of cephalosporins. Regarding the quality control of medicines, a validated microbiological assay for the determination of ceftriaxone sodium in powder for injectable solution has not been reported yet. This paper reports the development and validation of a simple, accurate and reproducible agar diffusion method to quantify ceftriaxone sodium in powder for injectable solution. The assay is based on the inhibitory effect of ceftriaxone sodium on the strain of Bacillus subtilis ATCC 9371 IAL 1027 used as test microorganism. The results were treated statistically by analysis of variance and were found to be linear (r = 0.999) in the selected range of 15.0-60.0 μg/mL, precise with a relative standard deviation (RSD) of repeatability intraday = 1.40%, accurate (100.46%) and robust with a RSD lower than 1.28%. The results demonstrated the validity of the proposed bioassay, which allows reliable ceftriaxone sodium quantitation in pharmaceutical samples and therefore can be used as a useful alternative methodology for the routine quality control of this medicine. © 2012 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
Chromatographic and electroanalytical methods were developed to detect and quantify Sudan II (SD-II) dye in fuel ethanol samples. Sudan II is reduced at +0.50 V vs. Ag/AgCl on a glassy carbon electrode using Britton-Robinson buffer (pH 4.0) and N,N-dimethylformamide (70:30, v/v) + sodium dioctyl sulfosuccinate surfactant as supporting electrolyte, due to the azo group. This is the basis for its determination by square-wave voltammetry (SWV). Using the optimized conditions, it is possible to get a linear calibration curve from 3.00×10-6 to 1.80×10-5 mol L-1 (r = 0.998) with limits of detection (LOD) and quantification (LOQ) of 2.05×10-6 and 6.76×10-6 mol L-1, respectively. In addition, the hydroxyl substituent in the SD-II dye is also oxidized at +0.85 V vs. Ag/AgCl, which was conveniently used for its determination by high-performance liquid chromatography coupled to electrochemical detection (HPLC-ED). Under the optimized condition, the SD-II dye was eluted and separated using a reversed-phase column (cyanopropyl, CN) using isocratic elution with the mobile phase containing acetonitrile and aqueous lithium chloride (5.00×10-4 mol L-1) at 70:30 (v/v) and a flow rate of 1.2 mL min-1. Linear calibration curves were obtained from 3.00×10-7 to 2.00×10-6 mol L-1 (r = 0.999) with LOD and LOQ of 3.10×10-8 and 1.05×10-7 mol L-1, respectively. Both methods were simple, fast and suitable to detect and quantify the dye in fuel ethanol samples at recovery values between 83.0 to 102% (SWV) and 88.0 to 112% (HPLC-ED) with satisfactory precision and accuracy.
Resumo:
Fruits and vegetables that are rich in polyphenolic compounds, especially flavonoids, may be used to benefit human health by reducing the incidence of cancers and cardiovascular diseases. Previous studies have demonstrated the antioxidant activity of guava, a fruit widely available in Brazil, possibly due to the presence of these polyphenolic compounds. The aim of this study was to analyze the total phenolic and flavonoid contents of various guava extracts, assay their antioxidant activity and record the chromatographic profiles of these extracts, to determine a simple and low way of extracting these compounds efficiently from guava. The results confirmed the presence of polyphenols in guava, including flavonoids, and its antioxidant activity. Furthermore, it was demonstrated that the 70% ethanol (by volume) was the most effective solvent to extract these compounds from the fruit, among those tested.
Resumo:
The BTEX (benzene, toluene, ethylbenzene and xylene) mixture is an environmental pollutant that has a high potential to contaminate water resources, especially groundwater. The bioremediation process by microorganisms has often been used as a tool for removing BTEX from contaminated sites. The application of biological assays is useful in evaluating the efficiency of bioremediation processes, besides identifying the toxicity of the original contaminants. It also allows identifying the effects of possible metabolites formed during the biodegradation process on test organisms. In this study, we evaluated the genotoxic and mutagenic potential of five different BTEX concentrations in rat hepatoma tissue culture (HTC) cells, using comet and micronucleus assays, before and after biodegradation. A mutagenic effect was observed for the highest concentration tested and for its respective non-biodegraded concentration. Genotoxicity was significant for all non-biodegraded concentrations and not significant for the biodegraded ones. According to our results, we can state that BTEX is mutagenic at concentrations close to its water solubility, and genotoxic even at lower concentrations, differing from some described results reported for the mixture components, when tested individually. Our results suggest a synergistic effect for the mixture and that the biodegradation process is a safe and efficient methodology to be applied at BTEX-contaminated sites. © 2012 Elsevier Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)