596 resultados para dental cements
Resumo:
The purpose of this study was to evaluate the surface roughness of four conventional chemically cured glass ionomer cements (Fuji IX, Ketac Molar, Vidrion R and Vitromolar) commonly used in atraumatic restorative treatment (ART) immediately after material preparation. Twenty specimens of each glass ionomer cement were fabricated and surface roughness was measured after material setting. The specimens were further examined under scanning electron microscopy. Data were analyzed statistically by Kruskal-Wallis test and Mann-Whitney test at 5% significance level. Two-by-two comparisons showed statistically significant difference (p<0.05) between all materials, except for Ketac Molar and Vidrion R, which had statically similar results (p>0.05). Regarding their results of surface roughness, the materials can be presented in a crescent order, as follows: Ketac Molar < Vidrion R < Fuji IX < Vitromolar. In conclusion, from the tested glass ionomer cements, Fuji IX, Ketac Molar and Vidrion R presented acceptable surface roughness after setting reaction while Vitromolar showed remarkably higher surface roughness.
Resumo:
Purpose: This study compared the shear bond strength (SBS) to enamel of rest seats made with a glass-ionomer cement (Fuji IX GP Fast), a resin-modified glass-ionomer cement (Fuji II LC), and a composite resin (Z100 MP) under monotonic and cyclic loading. Materials and Methods: Rest seats were built up onto the lingual surfaces of 80 intact human mandibular incisors. Specimens (n=10) were stored in distilled water at 37°C for 30 days and subjected to shear forces in a universal testing machine (0.5 mm/min) until fracture. The SBS values were calculated (MPa) using the bonding area (9.62 mm2) delimited by adhesive tags. A staircase approach was used to determine the SBS fatigue limit of each material. Specimens were submitted to either 10,000 cycles (5 Hz) or until specimen fracture. A minimum of 15 specimens was tested for each material. Scanning electron microscopy was used to examine the mode of failure. Data were statistically analyzed with one-way ANOVA and Tukey HSD tests (α = 0.05). Results: Z100 MP yielded higher (p < 0.05) SBS (12.25 MPa) than Fuji IX GP Fast (7.21 MPa). No differences were found between Fuji II LC (10.29 MPa) and the other two materials (p > 0.05). Fuji II LC (6.54 MPa) and Z100 MP (6.26 MPa) had a similar SBS limit. Fuji IX GP Fast promoted the lowest (p < 0.05) SBS fatigue limit (2.33 MPa). All samples showed cohesive failure patterns. Conclusion: Fatigue testing can provide a better means of estimating the performance of rest seats made with dental restoratives.
Resumo:
The aim of this study was to compare the bond strength to enamel between resin cements combined with total-etch and self-etch adhesive systems and a self-adhesive cement. Eighty bovine incisors had their buccal surface ground flat exposing a plane area in the enamel. Eighty Artglass resin cylinders measuring 3 mm in diameter and 4 mm in height were fabricated. The teeth were divided into eight groups of 10 teeth each and the resin cylinders were cemented with different adhesive systems and resin cements; G1: RelyX Unicem (self-adhesive cement); G2: H 3PO 4 + Single Bond + RelyX ARC; G3: AdheSE + Variolink II; G4: H 3PO 4 + Excite + Variolink II; G5: Xeno III + Enforce; G6: H 3PO 4 + Prime&Bond NT + Enforce; G7: Biatite Primers 1 and 2 + Bistite II DC; G8: H 3PO 4 + Bistite Primers 1 and 2 + Bistite II DC. After application of the adhesives, the cylinders were cemented according to manufacturer instructions. The specimens were submitted to 2000 thermal cycles at a temperature ranging from 5±5°C to 55±5°C, and shear bond strength was then tested at a variety of 1 mm/min. The data were analyzed by ANOVA and the Tukey's test (á=5%), obtaining a p value of 0.00. The following mean (±standard deviation) bond strength values were observed for each group: G1: 5.14(±0.99)a; G3: 16.23(±4.69)b; G7: 17.82(±3.66)b; G5: 18.48(±2.88)bc; G8: 20.15(±4.12)bc; G4: 22.85(±3.08)cd; G2: 24.96(±2.89)d; G6: 26.07(±1.69)d. Groups followed by the same letters did not differ significantly. For most of the resin cements tested, the application of adhesive systems using acid etching resulted in a higher bond strength when compared to the self-etch adhesive systems and to the self-adhesive cement.
Diametral tensile strength of dual-curing resin cements submitted exclusively to autopolymerization.
Resumo:
OBJECTIVES: To evaluate, at different times, the diametral tensile strength (DTS) of dual-curing resin cements that were not photopolymerized. METHOD AND MATERIALS: Equal amounts of base and catalyst pastes of Panavia F (Kuraray), Variolink II (Vivadent), Rely X (3M ESPE), and Enforce (Dentsply) were mixed and inserted into cylindrical molds (4 x 2 mm) (n = 10). Cements were not photopolymerized. DTS test was performed in a testing machine at 30 minutes, 1 hour, 24 hours, and 7 days. The specimens were stored in light-proof containers with distilled water at 37 degrees C until the time of assay. An autopolymerizing resin cement (Cement-It, Jeneric Pentron) and a zinc phosphate cement served as controls. One-way analysis of variance (ANOVA) and Tukey test were performed separately for each cement and for each time (P <.05). RESULTS: All cements showed an increase in DTS when tested at 1 and 24 hours. Tests at 24 hours and 7 days revealed no statistically significant differences. In all groups, the zinc phosphate cement had the lowest DTS mean values (2.1 MPa, 3.6 MPa, 6.5 MPa, and 6.9 MPa), while Cement-It (35.1 MPa, 33.6 MPa, 46.9 MPa, and 46.3 MPa) and Enforce (31.9 MPa, 31.7 MPa, 43.4 MPa, and 47.6 MPa) presented the highest DTS mean values. CONCLUSION: All cements presented maximal strength at 24 hours. The dual-curing resin cements, even when nonphotopolymerized, demonstrated higher DTS than the zinc phosphate cement and similar or lower values than the autopolymerizing resin cement.
Resumo:
This study subjected two self-adhesive resin cements and two conventional resin cements to dry and aging conditions, to compare their microtensile bond strengths (MTBS) to dentin. Using four different luting systems (n = 10), 40 composite resin blocks (each 5x5x4 mm) were cemented to flat human crown dentin surfaces. The specimens were stored in water for 24 hours (37°C), at which point each specimen was sectioned along two axes to obtain beams that were divided randomly into two groups: dry samples, which were tested immediately, and samples that were subjected to accelerated aging conditions (12, 000 thermocycles followed by storage for 150 days). The μTBS results were affected significantly by the luting system used (P < 40001). Only the μTBS of Rely-X Unicem was reduced significantly after aging; the μTBS remained stable or increased for the other self-adhesive resin cement and the two conventional cements.
Resumo:
The aim of this study was to assess the microhardness of 5 glass ionomer cements (GIC) - Vidrion R (V, SS White), Fuji IX (F, GC Corp.), Magic Glass ART (MG, Vigodent), Maxxion R (MR, FGM) and ChemFlex (CF, Dentsply) - in the presence or absence of a surface protection treatment, and after different storage periods. For each GIC, 36 test specimens were made, divided into 3 groups according to the surface protection treatment applied - no protection, varnish or nail varnish. The specimens were stored in distilled water for 24 h, 7 and 30 days and the microhardness tests were performed at these times. The data obtained were submitted to the ANOVA for repeated measures and Tukey tests (α = 5%). The results revealed that the mean microhardness values of the GICs were, in decreasing order, as follows: F > CF = MR > MG > V; that surface protection was significant for MR, at 24 h, without protection (64.2 ± 3.6a), protected with GIC varnish (59.6 ± 3.4b) and protected with nail varnish (62.7 ± 2.8ab); for F, at 7 days, without protection (97.8 ± 3.7ab), protected with varnish (95.9 ± 3.2b) and protected with nail varnish (100.8 ± 3.4a); and at 30 days, for F, without protection (98.8 ± 2.6b), protected with varnish (103.3 ± 4.4a) and protected with nail varnish (101 ± 4.1ab) and, for V, without protection (46 ± 1.3b), protected with varnish (49.6 ± 1.7ab) and protected with nail varnish (51.1 ± 2.6a). The increase in storage time produced an increase in microhardness. It was concluded that the different GICs, surface protection treatments and storage times could alter the microhardness values.
Resumo:
Aim: The aim of this in vitro study was to evaluate the surface roughness of three glass ionomer cements (GICs) indicated for ART restorations. Methods: Ten cylindrical specimens of three commercial glass ionomers cements (Vidrion R - S.S. White, Maxxion R - FGM and Vitromolar DFL) were prepared (n=30) without surface finishing or protection. Twenty-four hours after preparation, the surface roughness measurements were obtained as the mean of three readings of the surface of each specimen by profilometry. The roughness values (Ra, μm) were subjected to one-way ANOVA and Tukey's test (p<0.05). Results: No statistically significant differences were observed between Vidrion R (0.18 ± 0.05) and Vitromolar (0.21 ± 0.05), whereas Maxxion R presented significantly higher roughness values than those of the other materials. Conclusions: It may be concluded that characteristics of particle size and composition of the different GICs affected their surface roughness 24 h after preparation.
Resumo:
The application of ultrasound waves with a conventional dental ultrasonic scaler on glass ionomer cements surface accelerated initial setting reaction and improved the mechanical properties. Objective: This study evaluated the ultimate tensile strength of glass ionomer cements after ultrasonic excitation and different water storage times. Material and method: Twelve specimens of each material (Fuji IX GP, Ketac Molar Easymix and Vitremer) were prepared, and six of each received a 30-second ultrasound application during initial setting of the cements. After storage of the 24 hours or 30 days, the specimens were sectioned into stick to microtensile testing and the mean ultimate tensile strength values were submitted to Welch’s ANOVA and Tamhane’s test. Result: The results showed that the Vitremer presented the highest mean tensile strength. The chemically set Fuji IX GP presented significantly higher mean tensile strength after 30 days than after 24 hours of storage (p < 0.05). At 24 hours, the ultrasonically set Fuji IX GP presented significantly higher mean tensile strength than their counterparts set under standard conditions (p < 0.05). Conclusion: Treatment with ultrasound increased the tensile strength of Fuji IX GP in the early period of maturation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
To evaluate the transdentinal cytotoxicity of resin-based luting cements (RBLCs), with no HEMA in their composition, to odontoblast-like cells. Human dentine discs 0.3 mm thick were adapted to artificial pulp chambers (APCs) and placed in wells of 24-well plates containing 1 mL of culture medium (DMEM). Two categories of HEMA-free RBLCs were evaluated: group 1, self-adhesive Rely X Unicem (RU; 3M ESPE), applied directly to the dentine substrate; and group 2, Rely X ARC (RARC; 3M ESPE), applied to dentine previously acid-etched and treated with a bonding agent. In group 3 (control), considered as representing 100% cell metabolic activity, no treatment was performed on dentine. The APC/disc sets were incubated for 24 h or 7 days at 37 °C and 5% CO2 . Then, the extracts (DMEM + dental materials components that diffused through dentine) were applied to cultured odontoblast-like MDPC-23 cells for 24 h. After that, the cell viability (MTT assay), cell morphology (SEM), total protein production (TP) and alkaline phosphatase (ALP) activity were assessed. Data from MTT assay and TP production were analysed by Kruskal-Wallis and Mann-Whitney tests (α = 5%). Data from ALP activity were analysed by one-way anova and Tukey's test (α = 5%). In group 1, a slight reduction in cell viability (11.6% and 16.8% for 24-h and 7-day periods, respectively) and ALP activity (13.5% and 17.9% for 24-h and 7-day periods, respectively) was observed, with no significant difference from group 3 (control) (P > 0.05). In group 2, a significant reduction in cell viability, TP production and ALP activity compared with group 3 (control) occurred (P < 0.05), regardless of incubation time. Alteration in MDPC-23 cell morphology was observed only in group 2. HEMA-free Rely X ARC cement caused greater toxicity to odontoblast-like MDPC-23 cells than did Rely X Unicem cement when both resin-based luting materials were applied to dentine as recommended by the manufacturer.
Resumo:
The purpose of this study was to evaluate the effect of self-adhesive and self-etching resin cements on the bond strength of nonmetallic posts in different root regions. Sixty single-rooted human teeth were decoronated, endodontically treated, post-space prepared, and divided into six groups. Glass-fiber (GF) posts (Exacto, Angelus) and fiber-reinforced composite (FRC) posts (EverStick, StickTeck) were cemented with self-adhesive resin cement (Breeze) (SA) (Pentral Clinical) and self-etching resin cement (Panavia-F) (SE) (Kuraray). Six 1-mm-thick rods were obtained from the cervical (C), middle (M), and apical (A) regions of the roots. The specimens were then subjected to microtensile testing in a special machine (BISCO; Schaumburg, IL, USA) at a crosshead speed of 0.5 mm/min. Microtensile bond strength data were analyzed with two-way ANOVA and Tukey's tests. Means (and SD) of the MPa were: GF/SA/C: 14.32 (2.84), GF/SA/M: 10.69 (2.72), GF/SA/A: 6.77 (2.17), GF/SE/C: 11.56 (4.13), GF/SE/M: 6.49 (2.54), GF/SE/A: 3.60 (1.29), FRC/SA/C: 16.89 (2.66), FRC/SA/M: 13.18 (2.19), FRC/SA/A: 8.45 (1.77), FRC/SE/C: 13.69 (3.26), FRC/SE/M: 9.58 (2.23), FRC/SE/A: 5.62 (2.12). The difference among the regions was statistically significant for all groups (p < 0.05). The self-adhesive resin cement showed better results than the self-etching resin cement when compared to each post (p < 0.05). No statistically significant differences in bond strengths of the resin cements when comparable to each post (p > 0.05). The bond strength values were significantly affected by the resin cement and the highest values were found for self-adhesive resin cement.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Introduction and objective: Glass ionomer cement, which was first introduced in Dentistry in 1972, presents good qualities such as aesthetics, fluoride release and adhesion to dental tissues. Because of its preventive characteristics regarding to dental caries, glass ionomer cement has been used for Atraumatic Restorative Treatment (ART), as reported by Frencken and Holmgren [6], meeting the principles announced by the World Health Organization (WHO) for application to large population groups without regular access to dental care. Material and methods: In this present study, the abrasive wear strength of two glass-ionomer cements (Vidrion R® and ChemFlex®) was evaluated through toothbrushing machine. Classic® toothbrushes with soft bristles and Sorriso® dentifrice were also used for the study. Results: Student-t test showed significant difference between both groups, with tobs value = 9.4411 at p < 0.05. Conclusion: It can be concluded that the wear rate caused by toothbrush/dentifrice was higher for Vidrion R® (52.00 mg) than ChemFlex® (5.57 mg).
Resumo:
Uma ampla variedade de patógenos oportunistas tem sido detectadas nos tubos de alimentação de água dos equipos odontológicos, particularmente no biofilme formado na superfície do tubo. Entre os patógenos oportunistas encontrados nos tubos de água, Pseudomonas aeruginosa é reconhecida como uma das principais causadoras de infecções nosocomiais. Foram coletadas 160 amostras de água e 200 amostras de fomites em quarenta clinicas odontológicas na cidade de Barretos, São Paulo, Brasil, durante o período de Janeiro a Julho de 2005. Setenta e seis cepas de P. aeruginosa, isoladas a partir dos fomites (5 cepas) e das amostras de água (71 cepas), foram analisadas quanto à susceptibilidade à seis drogas antimicrobianas freqüentemente utilizadas para o tratamento de infecções provocadas por P. aeruginosa. As principais suscetibilidades observadas foram para a ciprofloxacina, seguida pelo meropenem. A necessidade de um mecanismo efetivo para reduzir a contaminação bacteriana dentro dos tubos de alimentação de água dos equipos odontológicos foi enfatizada, e o risco da exposição ocupacional e infecção cruzada na prática odontológica, em especial quando causada por patógenos oportunistas como a P. aeruginosa foi realçado.