297 resultados para SnO2 membranes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the Sb addition on the microstructural and electrical conductivity of the SnO2 thin film was studied in this work. Experimental results show that the Sb addition allowed to control the grain size and electrical conductivity of the SnO2 thin film, resulting in a nanostructured material. The nanostructured Sb-doped SnO2 thin films present high electrical conductivity, even in the presence of high porosity, supporting the hypothesis that nanostructured material must possess strong electrical conductivity. This work involves important aspects that can be applied to the development of high performance transparent conducting thin film. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of addition of different amounts of acetylacetone (acacH) on the species formed at room temperature and after thermohydrolysis at 70 degreesC for 30 and 120 min of ethanolic SnCl4.5H(2)O solutions is followed by EXAFS spectroscopy at the Sn K-edge. We show that thermohydrolyzed solutions are a mixture of SnO2 nanoparticles and soluble tin polynuclear species. The complexation of the tin molecular precursors by acetylacetonate ligands is evidenced by H-1, C-13, and Sn-119 NMR spectroscopy and EXAFS for a acacH/Sn ratio higher than 2. Single crystals are isolated from solution and the structure, determined by X-ray diffraction, is built up from monomeric Cl-3(H2O)Sn(acac)-H2O units bridged together by hydrogen bonding. The acacH/Sn ratio in solution controls the polycondensation of the hydrolyzed species but not the crystallite size of the SnO2 nanoparticles (similar to2 nm). Because of the major presence of chelated tin mono- and dimeric complexes in solution for acacH/Sn > 2, the condensation is almost inhibited, meanwhile the decrease of amount of chelated complexes for the acacH/Sn < 2 gives rise to an increase of the number of nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evaluation of free carrier concentration based on Drude's theory can be performed by the use of optical transmittance in the range 800-2000 nm (near infrared) for Sb-doped SnO2 thin films. In this article, we estimate the free carrier concentration for these films, which are deposited via sol-gel dip-coating. At approximately 900 mn, there is a separation among transmittance curves of doped and undoped samples. The plasma resonance phenomena approach leads to free carrier concentration of about 5 x 1020 cm(-3). The increase in the Sb concentration increases the film conductivity; however, the magnitude of measured resistivity is still very high. The only way to combine such a high free carrier concentration with a rather low conductivity is to have a very low mobility. It becomes possible when the crystallite dimensions are taken into account. We obtain grains with 5 nm of average size by estimating the grain size from X-ray diffraction data, and by using line broadening in the diffraction pattern. The low conductivity is due to very intense scattering at the grain boundary, which is created by the presence of a large amount of nanoscopic crystallites. Such a result is in accordance with X-ray photoemission spectroscopy data that pointed to Sb incorporation proportional to the free electron concentration, evaluated according to Drude's model. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Er-doped SnO2 thin films, obtained by sol-gel-dip-coating technique, were submitted to excitation with the 4th harmonic of a Nd:YAG laser (266 nm), at low temperature, and a conductivity decay is observed when the illumination is removed. This decay is modeled by considering a thermally activated cross section of an Er-related trapping center. Besides, grain boundary scattering is considered as dominant for electronic mobility. X-ray diffraction data show a characteristic profile of nanoscopic crystallite material (grain average size approximate to 5 nm) in agreement with this model. Temperature dependent and concentration dependent decays are measured and the capture barrier is evaluated from the model, yielding 100 meV for SnO2:0.1% Er and 148 meV for SnO2:4% Er.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The non-ohmic properties of the 98.95% SnO2 + 1.0 CoO + 0.05 Nb2O5 (all in mole%) system, as well as the influence of sintering temperature and atmosphere on these properties, were characterized in this study. The maximum non-linear coefficient (alpha = 32) was obtained for a sintering temperature of 1300 degrees C in an oxygen atmosphere and this maximum is associated with the presence of O in SnO2 grain boundaries, as interface defects. Experimental results also indicate thermionic-type conduction mechanisms, which are associated with the potential barrier of Schottky or Poole-Frenkel types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SnO2-based varistors doped with 0.5% cobalt, 0.5% zinc and various tantalum amounts were prepared by the solid-state route. Experimental evidence shows that small quantities of Ta2O5 improve the nonlinear properties of the samples significantly. It was found that samples doped with 0.05 mol% Ta2O5 exhibit the highest density (98.5%), the lowest electric breakdown field (E-b = 1050 V/cm) and the highest coefficient of nonlinearity (alpha = 11.5). The effect of Ta2O5 dopant could be explained by the substitution of Ta5+ by Sn4+. (C) 2004 Elsevier Ltd and Techna S.r.l. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical properties of Er-doped SnO2 thin films obtained by sol-gel-dip-coating technique were measured. When compared to undoped tin dioxide, rare-earth doped films present much higher resistivity, indicating that Er3+ presents an acceptor-like character into the matrix, which leads to a high degree of electric charge compensation. Current-voltage characteristics, measured above room temperature for Er-doped films, lead to non-linear behavior and two conduction regimes. In the lower electric field range the conduction is dominated by Schottky emission over the grain boundary potential barrier, which presents an average value of 0.85 eV. Increasing the applied bias, a second regime of conduction is observed, since the Poole-Frenkel coulombic barrier lowering becomes a significant effect. The obtained activation energy for ionization is 0.67 eV. (C) 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transmission and scanning electron microscopy techniques were used to study the heterogeneities found in the microstructure of (SnO2Co3O4Nb2O5Fe2O3)-Co-.-Nb-.-Fe-. and (SnO2ZnONb2O5FC2O3)-Zn-.-Nb-.-F-. varistors. Second phases encountered both inside the grains and ingrain boundary regions were identified using energy dispersive spectrometry and electron diffraction patterns. Through the electrical characterisation, the presence of iron oxide among the additives was determined to highlight the non-linear properties of the specimens. A discussion on the influence of second phases on the non-linear features of these systems is also addressed. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High non-linear J x E electrical characteristic (alpha=41) were obtained in the Nb2O5 and Cr2O3 doped CoO highly densified SnO2 ceramics. X-ray diffraction analysis showed that these ceramics are apparently single phase. Electrical properties and microstructure are highly dependent on the Cr2O3 concentration and on the sintering temperature. Excess of Cr2O3 leads to porous ceramics destroying the material's electrical characteristics probably due to precipitation of second phase of CoCr2O4 Dopant segregation and/or solid solution formation at the grain boundaries can be responsible for the formation of the electrical barriers which originate the varistor behaviour. (C) 1998 Elsevier B.V. Limited and Techna S.r.l. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SnO2 based ceramics doped with 1.0 mol% ZnO, 1.0 mol% CoO, 0.1 mol% WO3 and 0.05 mol% Cr2O3 show varistor behavior with nonlinear coefficient alpha = 33, breakdown electric field E-B = 12.5 kV/cm, leakage current I = 0.63 mA/cm(2) and average grain size of 1.52 mu m. Experimental evidence shows that the addition of Cr2O3 improves the nonlinear properties of the samples significantly, the impedance data, represented by means of Nyquist diagrams, show a dramatic increase in the resistivity for the samples doped with Cr2O3. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of tin in the network of silicate glasses produces changes in several of their physico-chemical properties. Glasses with the composition (mol%) 22Na(2)O (.) 8CaO (.) 70SiO(2) containing up to 5 wt% of SnO2 were analyzed under several experimental techniques. Dilatometric measurements showed an increase of the glass transition temperature with increasing tin content, while the average thermal expansion coefficient is reduced. Vickers microhardness, density, and refractive index also increase with the tin content. Diffuse reflectance spectra in the infrared (DRIFT) showed that the presence of tin, even at low concentrations, is responsible for some structural changes since there is an increase of the bridging oxygen concentration. The doped glasses present a brown color and optical absorption spectra measurements are interpreted as being due to precipitation of tin in the form of colloidal particles during cooling of the melted glass. In the Na+ <-> K+ ion exchange process the presence of tin in the glass network hinders the diffusion of these ions. The diffusion coefficients of those ions were calculated by the Boltzmann-Matano technique, after concentration profiles obtained by EDS measurements. All results obtained present evidences that Sn4+ cation acts as a glass network former. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An MNDO study has been carried out to analyze the decomposition process of the ethanol molecule on a SnO2 surface. A (SnO2)(7) (110) model has been selected to represent the surface. The decomposition process has been monitored by selection of a hydrogen-alpha-carbon distance of the ethanol molecule as reaction coordinate, This minimum energy pro file shows a maximum of 186 kJ mol(-1), and in the transition state there is a transfer of hydrogen-alpha-carbon to the SnO2 surface. There is also the interaction between the alcohol hydroxyls and the two oxygens of the oxide.