123 resultados para dosage forms
Resumo:
A simple, rapid inexpensive voltammetric method have been developed for the quantitative determination of albendazole (ABZ) as the pure assay, by direct dissolution of commercial tablets in HCl solutions. Studies with linear sweep (LSV), square-wave (SWV) and differential pulse voltammetry (DPV) were carried out ABZ in aqueous medium at a glassy carbon electrode. A well defined irreversible oxidation peak current was obtained at 1,00V vs. SCE. The method permits a precise quantitative determination of ABZ using the standard addition method. The detection limits for the three voltammetric techniques were found to be 3.0 x 10(-5) M (LSV), 6.2 x 10(-5) M (SWV) and 4.0 x 10(-5) M (DPV).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Oral administration with solid dosage forms is a common route in the drug therapy widely used. The drug release by the disintegration process occurs in several gastrointestinal tract (GIT) regions. AC Biosusceptometry (ACB) was originally proposal to characterize the disintegration process of tablets in vitro and in the human stomach, through changes in magnetic signals. The aim of this work was to employ a multisensor ACB system to monitoring magnetic tablets and capsules in the human GIT and to obtain the magnetic images of the disintegration process. The ACB showed accuracy to quantify the gastric residence time, the intestinal transit time and the magnetic images allowed to visualize the disintegration of magnetic formulations in the GIT. The ACB is a non-invasive, radiation free technique, completely safe and harmless to the volunteers and had demonstrated potential to evaluate pharmaceutical dosage forms in the human gastrointestinal tract. © 2005 IEEE.
Resumo:
In this work, a micellar system of benzathine penicillin G (BPG) in sodium deoxycholate (NaDC) was developed and evaluated physicochemically. The solubility profile of the drug in water and buffer solutions at various pH was determined, as well as its n-octanol/water partition coefficient. The Critical Micellar Concentration of NaDC and its ability to incorporate BPG were also assessed. The study was carried out at low and high ionic strength which was adjusted by the addition of sodium chloride. The results demonstrated the ability of the micellar system to incorporate BPG, as well as to increase its apparent solubility in water. The enhancement of the solubility of BPG by the presence of NaDC micelles could be analyzed quantitatively within the framework of the pseudo-phase model. Concentration analysis showed that the micellar system could attain up to 90% incorporation of BPG. The incorporated drug is expected to exhibit improved stability, since the antibiotic enclosed in the hydrophobic core of micelles is rather shielded from the aqueous external environment.
Resumo:
X-ray computed tomography (CT) refers to the cross-sectional imaging of an object measuring the transmitted radiation at different directions. In this work, we describe a non-conventional application of computerized tomography: visualization and improvements in the understanding of some internal structural features of solid dosage forms. A micro-CT X-ray scanner, with a minimum resolution of 30 μm was used to characterize some pharmaceutical tablets, granules, controlled-release osmotic tablet and liquid-filled soft-gelatin capsules. The analysis presented in this work are essentially qualitative, but quantitative parameters, such as porosity, density distribution, tablets dimensions, etc. could also be obtained using the related CT techniques. © 2010 American Institute of Physics.
Resumo:
A simple and rapid method was developed for the determination of amfepramone hydrochloride, fenprorex, and diazepam in capsules using high performance liquid chromatography (HPLC) with UV detection. This procedure provided conditions for the separation of the active ingredient from the complex matrices of the dosage forms by extraction in methanol. Isocratic reversed phase chromatography was performed using acetonitrile, methanol, and aqueous 0,1% ammonium carbonate (50:10:40) as a mobile phase, LiChrospher 100 RP 18 column (125 x 5 mm id, 5 mu m), a column temperature of 25 +/- 1 degrees C and detection at 230 nm.The calibration curves were linear over a wide concentration range (20-2000 mu g.mL(-1) to amfepramone hydrochloride, 8-800 mu g.mL(-1) to fenproporex, and 4-200 mu g.mL(-1) to diazepam) and good analytical recovery (87.1 to 107.8%) was obtained. The method is accurate and precise, as well as having advantages such as simplicity and short duration of analysis. Twenty samples of pharmaceutical preparations labelled as natural products were analysed. Anorectics and diazepam, were detected in 40% of the samples.
Resumo:
Praziquantel (PZQ) is effective against all known species of Schistosomes that infect humans. The failure of mass treatment of schistosomiasis has been attributed to the fact that therapy is not sufficiently long-lasting. This effect may be due to the low bioavailability of PZQ that has a low hydrosolubility and fast metabolism. Liposomes have been used to prolong drug levels. reduce the side effects, direct drugs to specific sites and increase bioavailability after administration. The aim of this work was to study the effect of phosphatidylcholine (PC)-containing liposomes to vehiculate PZQ to improve the treatment of schistosomiasis. The in vitro Study was carried out using Schistosoma mansoni parasites recovered by perfusion from the hepatic portal system of infected mice. Suspensions of liposomes with PZQ and free PZQ were administered p.o. in mice after 14 days of infection. The effect of both preparations in vitro on S. mansoni culture was similar. In the in vivo test, PZQ-liposomes caused a decrease in amounts of eggs and parasites. Liposomes improve the antischistosomal activity of praziquantel. This can be used as a starting point to investigate alternative administration routes or dosage forms and to examine the mechanism of intestinal absorption of PRZ © 2005 Elsevier B.V. All rights reserved.
Resumo:
Simple and rapid procedures were developed for the quantification of amfepramone hydrochloride and diazepam and mazindol and diazepam in tablets using high performance liquid chromatography (HPLC) with UV detection. These techniques provided conditions for the separation of each active ingredient from the complex matrices of the dosage forms by dilution or extraction in methanol. Isocratic reversed phase chromatography was performed using acetonitrile, methanol, and aqueous 0,1% ammonium carbonate (70:10:20, v/v/v) as a mobile phase, Radial-Pak C-18 column (100 x 8 mm id, 4 mu m), a column temperature of 25+/-1 degrees C and detection at 255 nm. The calibration curves were linear over a wide concentration range (100-1000 mu g.mL(-1) to amfepramone hydrochloride and mazindol and 10-100 mu g.mL(-1) to diazepam) with good correlation factors of 0.9978, 0.9956 and 0.9997 for amfepramone hydrochloride, mazindol, and diazepam, respectively.Mean recoveries obtained from the two kinds of samples ranged from 83.2 to 102.5%, with coefficients of variation ranging from 1.0 to 6.1.These results demonstrated the efficiency of the proposed methods, as well as advantages such as simplicity and short duration of analysis.
Resumo:
To achieve effective drug concentration at the intended site for a sufficient period of time is a requisite desired for many drug formulations. For drugs intended to ocular delivery, its poor bioavailability is due to pre-corneal factors. Most ocular diseases are treated by topical drug application in the form of solution, suspension and ointment. However, such dosage forms are no longer sufficient to combat some ocular diseases. Intravitreal drug injection is the current therapy for disorders in posterior segment. The procedure is associated with a high risk of complications, particularly when frequent, repeated injections are required. Thus, sustained-release technologies are being proposed, and the benefits of using colloidal carriers in intravitreal injections are currently under investigation for posterior drug delivery. This review will discuss recent progress and specific development issues relating to colloidal drug delivery systems, such as liposomes, niosomes, nanoparticles, and microemulsions in ocular drug delivery.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cyclodextrins (CDs) are annular oligosaccharides containing 6-12 glucose unities joined together by alpha-1,4 bonds. They have a conical-truncated shape with a lipophilic cavity in which different molecules can be included resulting in a stable inclusion complex. The cyclodextrins have been widely applied in pharmaceutical technology with the objective of increasing the solubility, stability and bioavailability of drugs in different pharmaceutical dosage forms, such as tablets. In order to obtain beta-CD tablets, liquid dispersions of drug/beta-CD are usually submitted to different drying processes, like spray-drying, freeze-drying or slow evaporation, being this dry material added to a number of excipients. However, such drying processes can generate particulate materials showing problems of flow and compressibility, needing their conversion into granulates by means of wetting with granulation liquid followed by additional drying. In this work, the main objective was to evaluate the preparation of tablets without the need of this additional drying step. For this purpose an aqueous dispersion containing acetaminophen/beta-CD complex and cornstarch was dried using a spouted bed and the obtained granules were compressed in tablets. Acetaminophen was used as model drug due to its low water solubility and the inexpensive and widely available cornstarch was chosen as excipient. Acetaminophen powder was added into a beta-cyclodextrin solution prepared in distilled water at 70 degrees C. Stirring was kept until this dispersion cooled to room temperature. Then cornstarch was added and the resulting dispersion was dried in spouted bed equipment. This material was compressed into tablets using an Erweka Korsh EKO tablet machine. This innovative approach allowed the tablets preparation process to be carried out with fewer steps and represents a technological reliable strategy to produce beta-cyclodextrin inclusion complexes tablets. (C) 2010 Elsevier By. All rights reserved.
Resumo:
Thermal analysis has been extensively used to obtain information about drug-polymer interactions and to perform pre-formulation studies of pharmaceutical dosage forms. In this work, biodegradable microparticles of poly(D,L-lactide-co-glycolide) (PLGA) containing ciprofloxacin hydrochloride (CP) in various drug:polymer ratios were obtained by spray drying. The main purpose of this study was to investigate the effect of the spray drying process on the drug-polymer interactions and on the stability of microparticles using differential scanning calorimetry (DSC), thermogravimetry (TG) and derivative thermogravimetry (DTG) and infrared spectroscopy (IR). The results showed that the high levels of encapsulation efficiency were dependant on drug:polymer ratio. DSC and TG/DTG analyses showed that for physical mixtures of the microparticles components the thermal profiles were different from those signals obtained with the pure substances. Thermal analysis data disclosed that physical interaction between CP and PLGA in high temperatures had occurred. The DSC and TG profiles for drug-loaded microparticles were very similar to the physical mixtures of components and it was possible to characterize the thermal properties of microparticles according to drug content. These data indicated that the spray dryer technique does not affect the physicochemical properties of the microparticles. In addition, the results are in agreement with IR data analysis demonstrating that no significant chemical interaction occurs between CP and PLGA in both physical mixtures and microparticles. In conclusion, we have found that the spray drying procedure used in this work can be a secure methodology to produce CP-loaded microparticles. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The objective of the current study was to develop and subsequently validate a simple, sensitive and precise reversed-phase LC method for the determination of ciprofloxacin hydrochloride in ophthalmic solution form. The chromatographic separation of ciprofloxacin hydrochloride was achieved on a Symmetry Waters C(18) column using UV detection at 275 nm. The optimized mobile phase consisted of 2.5% acetic acid solution: methanol:acetonitrile (70:15:15, v/v/v). The proposed method provided linear responses within the concentration range 1.0-6.0 mu g mL(-1) for ciprofloxacin hydrochloride. Correlation coefficient (r) for the ciprofloxacin hydrochloride was 0.9994. The precision of the method was demonstrated using intra- and inter-day assay RSD% values which were less than 5% in all instances. No interference from any components of pharmaceutical dosage forms was observed.