255 resultados para bone implant
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES
Resumo:
The purpose of this paper was to evaluate the expression of RANK protein during bone-healing process around machined surface implants. Twenty male Wistar rats, 90 days old, after having had a 2 mm diameter and 6 mm long implant inserted in their right tibias, were evaluated at 7, 14, 21, and 42 days after healing. After obtaining the histological samples, slides were subjected to RANK immunostaining reaction. Results were quantitatively evaluated. Results. Immunolabeling analysis showed expressions of RANK in osteoclast and osteoblast lineage cells. The statistical analysis showed an increase in the expression of RANK in osteoblasts at 7 postoperative days and a gradual decrease during the chronology of the healing process demonstrated by mild cellular activity in the final stage (P < .05). Conclusion. RANK immunolabeling was observed especially in osteoclast and osteoblast cells in primary bone during the initial periods of bone-healing/implant interface.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Recent clinical studies have described maxillary sinus floor augmentation by simply elevating the maxillary sinus membrane without the use of adjunctive grafting materials. Purpose: This experimental study aimed at comparing the histologic outcomes of sinus membrane elevation and simultaneous placement of implants with and without adjunctive autogenous bone grafts. The purpose was also to investigate the role played by the implant surface in osseointegration under such circumstances. Materials and Methods: Four tufted capuchin primates had all upper premolars and the first molar extracted bilaterally. Four months later, the animals underwent maxillary sinus membrane elevation surgery using a replaceable bone window technique. The schneiderian membrane was kept elevated by insertion of two implants (turned and oxidized, Brånemark System®, Nobel Biocare AB, Göteborg, Sweden) in both sinuses. The right sinus was left with no additional treatment, whereas the left sinus was filled with autogenous bone graft. Implant stability was assessed through resonance frequency analysis (Osstell™, Integration Diagnostics AB, Göteborg, Sweden) at installation and at sacrifice. The pattern of bone formation in the experimental sites and related to the different implant surfaces was investigated using fluorochromes. The animals were sacrificed 6 months after the maxillary sinus floor augmentation procedure for histology and histomorphometry (bone-implant contact, bone area in threads, and bone area in rectangle). Results: The results showed no differences between membrane-elevated and grafted sites regarding implant stability, bone-implant contacts, and bone area within and outside implant threads. The oxidized implants exhibited improved integration compared with turned ones as higher values of bone-implant contact and bone area within threads were observed. Conclusions: The amount of augmented bone tissue in the maxillary sinus after sinus membrane elevation with or without adjunctive autogenous bone grafts does not differ after 6 months of healing. New bone is frequently deposited in contact with the schneiderian membrane in coagulum-alone sites, indicating the osteoinductive potential of the membrane. Oxidized implants show a stronger bone tissue response than turned implants in sinus floor augmentation procedures. © 2006 Blackwell Publishing, Inc.
Resumo:
Background: Previous studies have shown that membrane elevation results in predictable bone formation in the maxillary sinus provided that implants can be placed as tent poles. In situations with an extremely thin residual crest which impairs implant placement, it is possible that a space-making device can be used under the sinus membrane to promote bone formation prior to placement of implants. Purpose: The present study was conducted to test the hypothesis that the use of a space-making device for elevation of the sinus membrane will result in predictable bone formation at the maxillary sinus floor to allow placement of dental implants. Materials and Methods: Eight tufted capuchin primates underwent bilateral sinus membrane elevation surgery, and a bioresorbable space-making device, about 6 mm wide and 6 mm in height, was placed below the elevated membrane on the sinus floor. An oxidized implant (Nobel Biocare AB, Gothenburg, Sweden) was installed in the residual bone protruding into the created space at one side while the other side was left without an implant. Four animals were sacrificed after 6 months of healing. The remaining four animals received a second implant in the side with a space-making device only and followed for another 3 months before sacrifice. Implant stability was assessed through resonance frequency analysis (RFA) using the Osstell™ (Osstell AB, Gothenburg, Sweden) at installation, 6 months and 9 months after the first surgery. The bone-implant contact (BIC) and bone area inside the threads (BA) were histometrically evaluated in ground sections. Results: Histologically there were only minor or no signs of bone formation in the sites with a space-making device only. Sites with simultaneous implant placement showed bone formation along the implant surface. Sites with delayed implant placement showed minor or no bone formation and/or formation of a dense fibrous tissue along the apical part of the implant surface. In the latter group the apical part of the implant was not covered with the membrane but protruded into the sinus cavity. Conclusions: The use of a space-making device, with the design used in the present study, does not result in bone formation at the sinus floor. However, membrane elevation and simultaneous placement of the device and an implant does result in bone formation at the implant surface while sites with implants placed 6 months after membrane elevation show only small amounts of bone formation. It is suggested that lack of stabilization of the device and/or a too extensive elevation of the membrane may explain the results. © 2009, Wiley Periodicals, Inc.
Resumo:
A porous material for bone ingrowth with adequate pore structure and appropriate mechanical properties has long been sought as the ideal bone-implant interface. This study aimed to assess in vivo the influence of three types of porous titanium implant on the new bone ingrowth. The implants were produced by means of a powder metallurgy technique with different porosities and pore sizes: Group 1 = 30% and 180 μm; Group 2 = 30% and 300 μm; and Group 3 = 40% and 180 μm. Six rabbits received one implant of each type in the right and left tibiae and were sacrificed 8 weeks after surgery for histological and histomor-phometric analyses. Histological analysis confirmed new bone in contact with the implant, formed in direction of pores. Histomorphometric evaluation demonstrated that the new bone formation was statistically significantly lower in the group G1 than in group G3, (P = 0.023). Based on these results, increased porosity and pore size were concluded to have a positive effect on the amount of bone ingrowth.
Resumo:
The aim of this study was to evaluate the influence of the high values of insertion torques on the stress and strain distribution in cortical and cancellous bones. Based on tomography imaging, a representative mathematical model of a partial maxilla was built using Mimics 11.11 and Solid Works 2010 softwares. Six models were built and each of them received an implant with one of the following insertion torques: 30, 40, 50, 60, 70 or 80 Ncm on the external hexagon. The cortical and cancellous bones were considered anisotropic. The bone/implant interface was considered perfectly bonded. The numerical analysis was carried out using Ansys Workbench 10.0. The convergence of analysis (6%) drove the mesh refinement. Maximum principal stress (σ max) and maximum principal strain (ε max) were obtained for cortical and cancellous bones around to implant. Pearson's correlation test was used to determine the correlation between insertion torque and stress concentration in the periimplant bone tissue, considering the significance level at 5%. The increase in the insertion torque generated an increase in the σ max and ε max values for cortical and cancellous bone. The σmax was smaller for the cancellous bone, with greater stress variation among the insertion torques. The ε max was higher in the cancellous bone in comparison to the cortical bone. According to the methodology used and the limits of this study, it can be concluded that higher insertion torques increased tensile and compressive stress concentrations in the periimplant bone tissue.
Resumo:
Low-level laser (LLL) has been used on peri-implant tissues for accelerating bone formation. However, the effect of one session of LLL in the strength of bone-implant interface during early healing process remains unclear. The present study aims to evaluate the removal torque of titanium implants irradiated with LLL during surgical preparation of implant bed, in comparison to non-irradiation. Sixty-four Wistar rats were used. Half of the animals were included in LLL group, while the other half remained as control. All animals had the tibia prepared with a 2 mm drill, and a titanium implant (2.2 × 4 mm) was inserted. Animals from LLL group were irradiated with laser (gallium aluminum arsenide), with a wavelength of 808 nm, a measured power output of 50 mW, to emit radiation in collimated beams (0.4 cm2), for 1 min and 23 s, and an energy density of 11 J/cm2. Two applications (22 J/cm 2) were performed immediately after bed preparation for implant installation. Flaps were sutured, and animals from both groups were sacrificed 7, 15, 30, and 45 days after implant installation, when load necessary for removing implant from bone was evaluated by using a torquimeter. In both groups, torque values tended to increase overtime; and at 30 and 45 days periods, values were statistically higher for LLL group in comparison to control (ANOVA test, p < 0.0001). Thus, it could be suggested that a single session of irradiation with LLL was beneficial to improve bone-implant interface strength, contributing to the osseointegration process. © 2012 Springer-Verlag London Ltd.
Resumo:
Objective: To compare immediate and staged approach implant placement in circumferential defects treated with deproteinized bovine bone mineral (DBBM); hidroxyapatite/tricalcium phosphate (HA/TP); autogenous bone (Ab); and coagulum (Cg); upon implant stability, osseointegration and alveolar crest maintenance. Materials and methods: Six dogs underwent extractions of lower premolars, bilaterally. Twelve weeks later four bone defects (6 mm wide/4 mm long) were drilled at one side and randomly filled with DBBM; HA/TP; Ab; and Cg, respectively, and left to heal (staged approach). Eight weeks later one implant (Osseospeed™, AstraTech) was placed in experimental sites. At the same session four defects were drilled on contra-lateral side and implants were inserted immediately after biomaterials grafting (immediate approach). Animals were euthanized 8 weeks later. Implant stability was measured by resonance frequency analysis (RFA) at installation and after sacrifice. Ground sections were prepared for bone contact (BIC); bone area (BA); distance implant shoulder-bone crest (IS-C); distance implant shoulder first bone contact (IS-B); and areas occupied by soft tissue. Results: The BA and BIC were superior in the staged approach. The Cg exhibited higher BIC and BA as compared with other materials at the total implant body (P = 0.004 and 0.012, respectively). The DBBM, HA/TP and Ab groups rendered similar BA and BIC. The immediate approach resulted in less crest resorption compared to staged approach. The biomaterials did not affect the IS-C and IS-B measurements. Particles area tended to be higher in DBBM group than HA/TP (P = 0.15), while soft tissue infiltrate was higher in DBBM group when used in the immediate approach (P = 0.04). The RFA indicated gain in stability in the staged approach (P = 0.002). The correlation test between RFA vs. BIC and BA demonstrated inferior stability for DBBM group in immediate approach (P = 0.01). Conclusions: Implants placed in healed defects resulted in better stability as a consequence of higher BIC and BA. The Cg alone rendered increased BIC compared to other materials in both approaches. Immediate approach should be preferable to staged approach in terms of alveolar crest maintenance. The BIC and BA values did not vary between micro and macro-threads in this experimental model. Implants installed in sites filled with DBBM in immediate approach were less stable. © 2011 John Wiley & Sons A/S.
Resumo:
Purpose: To evaluate the effect of implant osteotomy on immediate bone cell viability, comparing guided surgery for implant placement with the classic drilling procedure. Materials and Methods: For this study, 20 rabbits were used. The animals were divided into a guided surgery group (GG) and a control group (CG) and were then divided into 4 subgroups - subgroups 1, 2, 3, and 4 - corresponding to drills used 10, 20, 30, and 40 times, respectively. All animals received 5 osteotomies in each tibia, by use of the classic drilling procedure in one tibia and guided surgery in the other tibia. The osteotomized areas were removed and processed immunohistochemically for detection of osteocalcin, receptor activator of nuclear factor κB ligand (RANKL), osteoprotegerin (OPG), and caspase 3. Results: Immunohistochemical analysis showed that osteocalcin expression was initially higher in the CG and remained constant after drill reutilization. Although the expressions of RANKL and OPG were not statistically different for the GG and CG, the RANKL/OPG ratio tended to be higher for the GG. Moreover, caspase 3 expression was elevated in the GG, proportionally to the number of osteotomies, indicating an increase in the apoptosis index in the GG. Conclusions: The classic drilling procedure is more favorable to cell viability than guided surgery.© 2013 American Association of Oral and Maxillofacial Surgeons.
Resumo:
The aim of this study was to evaluate stress distribution on the pen-implant bone, simulating the influence of Nobel Select implants with straight or angulated abutments on regular and switching platform in the anterior maxilla, by means of 3-dimensional finite element analysis. Four mathematical models of a central incisor supported by external hexagon implant (13 mm x 5 mm) were created varying the platform (R, regular or S. switching) and the abutments (S, straight or A, angulated 15 degrees). The models were created by using Mimics 13 and Solid Works 2010 software programs. The numerical analysis was performed using ANSYS Workbench 10.0. Oblique forces (100 N) were applied to the palatine surface of the central incisor. The bone/implant interface was considered perfectly integrated. Maximum (sigma(max)) and minimum (sigma(min)) principal stress values were obtained. For the cortical bone the highest stress values (sigma(max)) were observed in the RA (regular platform and angulated abutment, 51 MPa), followed by SA (platform switching and angulated abutment, 44.8 MPa), RS (regular platform and straight abutment, 38.6 MPa) and SS (platform switching and straight abutment, 36.5 MPa). For the trabecular bone, the highest stress values (sigma(max)) were observed in the RA (6.55 MPa), followed by RS (5.88 MPa), SA (5.60 MPa), and SS (4.82 MPa). The regular platform generated higher stress in the cervical periimplant region on the cortical and trabecular bone than the platform switching, irrespective of the abutment used (straight or angulated).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Placement of implants in fresh sockets is an alternative to try to reduce physiological resorption of alveolar ridge after tooth extraction. This surgery can be used to preserve the bone architecture and also accelerate the restorative procedure. However, the diastasis observed between bone and implant may influence osseointegration. So, autogenous bone graft and/or biomaterials have been used to fill this gap. Considering the importance of bone repair for treatment with implants placed immediately after tooth extraction, this study aimed to present a literature review about biomaterials surrounding immediate dental implants. The search included 56 articles published from 1969 to 2012. The results were based on data analysis and discussion. It was observed that implant fixation immediately after extraction is a reliable alternative to reduce the treatment length of prosthetic restoration. In general, the biomaterial should be used to increase bone/implant contact and enhance osseointegration.
Resumo:
Purpose: Considering the potential of the association between laser ablation and smaller scale hydroxyapatite (HA) coatings to create a stable and bioactive surface on titanium dental implants, the aim of the present study was to determine, by the removal torque test, the effects of a surface treatment created by laser-ablation (Nd:YAG) and, later, thin deposition of HA particles by a chemical process, compared to implants with only laser-ablation and implants with machined surfaces.Materials and Methods: Forty-eight rabbits received I implant by tibia of the following surfaces: machined surface (MS), laser-modified surface (LMS), and biomimetic hydroxiapatite coated surface (HA). After 4, 8, and 12 weeks of healing, the removal torque was measured by a torque gauge. The surfaces studied were analyzed according to their topography, chemical composition, and roughness.Results: Average removal torque in each period was 23.28, 24.0, and 33.85 Ncm to MS, 33.0, 39.87, and 54.57 Ncm to LMS, and 55.42, 63.71 and 64.0 Ncm to HA. The difference was statistically significant (P < .05) between the LMS-MS and HA-MS surfaces in all periods of evaluation, and between LMS-HA to 4 and 8 weeks of healing. The surface characterization showed a deep, rough, and regular topography provided by the laser conditioning, that was followed by the HA coating.Conclusions: Based on these results, it was possible to conclude that the implants with laser surface modification associated with HA biomimetic coating can shorten the implant healing period by the increase of bone implant interaction during the first 2 months after implant placement. (C) 2009 American Association of Oral and Maxillofacial Surgeons J Oral Maxillofac Surg 67:1706-1715, 2009