168 resultados para Orthogonal Laurent polynomials
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A positive measure psi defined on [a, b] such that its moments mu(n) = integral(b)(a)t(n) d psi(t) exist for n = 0, +/-1, +/-2. can be called a strong positive measure on [a, b] When 0 <= a < b <= infinity the sequence of polynomials {Q(n)} defined by integral(b)(a) t(-n+s) Q(n)(t) d psi(t) = 0, s = 0, ., n - 1, exist and they are referred here as L-orthogonal polynomials We look at the connection between two sequences of L-orthogonal polynomials {Q(n)((1))} and {Q(n)((0))} associated with two closely related strong positive measures and th defined on [a, b]. To be precise, the measures are related to each other by (t - kappa) d psi(1)(t) = gamma d psi(0)(t). where (t - kappa)/gamma is positive when t is an element of (n, 6). As applications of our study. numerical generation of new L-orthogonal polynomials and monotonicity properties of the zeros of a certain class of L-orthogonal polynomials are looked at. (C) 2010 IMACS Published by Elsevier B V All rights reserved
Resumo:
We consider a connection that exists between orthogonal polynomials associated with positive measures on the real line and orthogonal Laurent polynomials associated with strong measures of the class S-3 [0, beta, b]. Examples are given to illustrate the main contribution in this paper. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Let (a, b) subset of (0, infinity) and for any positive integer n, let S-n be the Chebyshev space in [a, b] defined by S-n:= span{x(-n/2+k),k= 0,...,n}. The unique (up to a constant factor) function tau(n) is an element of S-n, which satisfies the orthogonality relation S(a)(b)tau(n)(x)q(x) (x(b - x)(x - a))(-1/2) dx = 0 for any q is an element of Sn-1, is said to be the orthogonal Chebyshev S-n-polynomials. This paper is an attempt to exibit some interesting properties of the orthogonal Chebyshev S-n-polynomials and to demonstrate their importance to the problem of approximation by S-n-polynomials. A simple proof of a Jackson-type theorem is given and the Lagrange interpolation problem by functions from S-n is discussed. It is shown also that tau(n) obeys an extremal property in L-q, 1 less than or equal to q less than or equal to infinity. Natural analogues of some inequalities for algebraic polynomials, which we expect to hold for the S-n-pelynomials, are conjectured.
Resumo:
A positive measure ψ defined on [a,b] such that its moments μn=∫a btndψ(t) exist for n=0,±1,±2,⋯, is called a strong positive measure on [a,b]. If 0≤apolynomials {Qn}, defined by ∫a bt-n+sQn(t)dψ(t)=0, s=0,1,⋯,n-1, is known to exist. We refer to these polynomials as the L-orthogonal polynomials with respect to the strong positive measure ψ. The purpose of this manuscript is to consider some properties of the kernel polynomials associated with these L-orthogonal polynomials. As applications, we consider the quadrature rules associated with these kernel polynomials. Associated eigenvalue problems and numerical evaluation of the nodes and weights of such quadrature rules are also considered. © 2010 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
We show how symmetric orthogonal polynomials can be linked to polynomials associated with certain orthogonal L-polynomials. We provide some examples to illustrate the results obtained Finally as an application, we derive information regarding the orthogonal polynomials associated with the weight function (1 + kx(2))(1 - x(2))(-1/2), k > 0.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We consider interpolatory quadrature rules with nodes and weights satisfying symmetric properties in terms of the division operator. Information concerning these quadrature rules is obtained using a transformation that exists between these rules and classical symmetric interpolatory quadrature rules. In particular, we study those interpolatory quadrature rules with two fixed nodes. We obtain specific examples of such quadrature rules.
Resumo:
We consider the real Szego polynomials and obtain some relations to certain self inversive orthogonal L-polynomials defined on the unit circle and corresponding symmetric orthogonal polynomials on real intervals. We also consider the polynomials obtained when the coefficients in the recurrence relations satisfied by the self inversive orthogonal L-polynomials are rotated. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Studies investigating the use of random regression models for genetic evaluation of milk production in Zebu cattle are scarce. In this study, 59,744 test-day milk yield records from 7,810 first lactations of purebred dairy Gyr (Bos indicus) and crossbred (dairy Gyr × Holstein) cows were used to compare random regression models in which additive genetic and permanent environmental effects were modeled using orthogonal Legendre polynomials or linear spline functions. Residual variances were modeled considering 1, 5, or 10 classes of days in milk. Five classes fitted the changes in residual variances over the lactation adequately and were used for model comparison. The model that fitted linear spline functions with 6 knots provided the lowest sum of residual variances across lactation. On the other hand, according to the deviance information criterion (DIC) and Bayesian information criterion (BIC), a model using third-order and fourth-order Legendre polynomials for additive genetic and permanent environmental effects, respectively, provided the best fit. However, the high rank correlation (0.998) between this model and that applying third-order Legendre polynomials for additive genetic and permanent environmental effects, indicates that, in practice, the same bulls would be selected by both models. The last model, which is less parameterized, is a parsimonious option for fitting dairy Gyr breed test-day milk yield records. © 2013 American Dairy Science Association.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)