94 resultados para Cellular automata
Resumo:
When the food supply flnishes, or when the larvae of blowflies complete their development and migrate prior to the total removal of the larval substrate, they disperse to find adequate places for pupation, a process known as post-feeding larval dispersal. Based on experimental data of the Initial and final configuration of the dispersion, the reproduction of such spatio-temporal behavior is achieved here by means of the evolutionary search for cellular automata with a distinct transition rule associated with each cell, also known as a nonuniform cellular automata, and with two states per cell in the lattice. Two-dimensional regular lattices and multivalued states will be considered and a practical question is the necessity of discovering a proper set of transition rules. Given that the number of rules is related to the number of cells in the lattice, the search space is very large and an evolution strategy is then considered to optimize the parameters of the transition rules, with two transition rules per cell. As the parameters to be optimized admit a physical interpretation, the obtained computational model can be analyzed to raise some hypothetical explanation of the observed spatiotemporal behavior. © 2006 IEEE.
Resumo:
This study focused on representing spatio-temporal patterns of fungal dispersal using cellular automata. Square lattices were used, with each site representing a host for a hypothetical fungus population. Four possible host states were allowed: resistant, permissive, latent or infectious. In this model, the probability of infection for each of the healthy states (permissive or resistant) in a time step was determined as a function of the host's susceptibility, seasonality, and the number of infectious sites and the distance between them. It was also assumed that infected sites become infectious after a pre-specified latency period, and that recovery is not possible. Several scenarios were simulated to understand the contribution of the model's parameters and the spatial structure on the dynamic behaviour of the modelling system. The model showed good capability for representing the spatio-temporal pattern of fungus dispersal over planar surfaces. With a specific problem in mind, the model can be easily modified and used to describe field behaviour, which can contribute to the conservation and development of management strategies for both natural and agricultural systems. © 2012 Elsevier B.V.
Resumo:
This paper analyzes land use change in Rio Claro City and its surroundings, located in the southeastern state of Sao Paulo, in the period from 1988 to 1995, using air-borne digital imagery and a cellular automata model. The simulation experiment was carried out in the Dinamica EGO platform and the results revealed a constrained urban sprawl, resulting from both the densification of residential areas implemented in previous years and the economic recession that led to an internal financial crisis in Brazil during the early 1990s. The simulation outputs were validated using a multi-resolution procedure based on a fuzzy similarity index and showed a satisfactory fitness in relation to the historical reference data. © 2013 IEEE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The dengue virus is transmitted in regions previously infested with the mosquito Aedes aegypti. To assess the spreading and establishment of the dengue disease vector, a mathematical model is developed that takes into account the diffusion and advection phenomena. A discrete model based on the cellular automata approach, which is a good framework to deal with small populations, is also developed to be compared with the continuous modeling.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A method for improving the accuracy of surface shape measurement by multiwavelength holography is presented. In our holographic setup, a Bi12TiO20 photorefractive crystal was the holographic recording medium, and a multimode diode laser emitting in the red region was the light source in a two-wave mixing scheme. on employing such lasers the resulting holographic image appears covered with interference fringes corresponding to the object relief, and the interferogram spatial frequency is proportional to the diode laser's free spectral range (FSR). Our method consists in increasing the effective free spectral range of the laser by positioning a Fabry-Perot etalon at the laser output for mode selection. As larger effective values of the laser FSR were achieved, higher-spatial-frequency interferograms were obtained and therefore more sensitive and accurate measurements were performed. The quantitative evaluation of the interferograms was made through the phase-stepping technique, and the phase map unwrapping was carried out through the cellular-automata method. For a given surface, shape measurements with different interferogram spatial frequencies were performed and compared with respect to measurement noise and visual inspection. (c) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A novel method for surface profilometry by holography is presented. We used a diode laser emitting at many wavelengths simultaneously as the light source and a Bi12TiO20 (BTO) crystal as the holographic medium in single exposure processes. The employ of multi-wavelength, large free spectral range (FSR) lasers leads to holographic images covered of interference fringes corresponding to the contour lines of the studied surface. In order to obtain the relief of the studied surface, the fringe analysis was performed by the phase stepping technique (PST) and the phase unwrapping was carried out by the Cellular-automata method. We analysed the relief of a tilted flat metallic bar and a tooth prosthesis.
Resumo:
The application of multi-wavelength holography for surface shape measurement is presented. In our holographic setup a Bi12TiO 20 (BTO) photorefractive crystal was the holographic recording medium and a multimode diode laser emitting in the red region was the light source in a two-wave mixing scheme. The holographic imaging with multimode lasers results in multiple holograms in the BTO. By employing such lasers the resulting holographic image appears covered of interference fringes corresponding to the object relief and the interferogram spatial frequency is proportional to the diode laser free spectral range (FSR). We used a Fabry-Perot étalon at the laser output for laser mode selection. Thus, larger effective values of the laser FSR were achieved, leading to higher-spatial frequency interferograms and therefore to more sensitive and accurate measurements. The quantitative evaluation of the interferograms was performed through the phase stepping technique (PST) and the phase map unwrapping was carried out through the Cellular-Automata method. For a given surface, shape measurements with different interferogram spatial frequencies were performed and compared, concerning measurement noise and visual inspection.
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)