12 resultados para vocalizations
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Parental care in mammals is influenced by somatosensory stimuli from infants, such as vocalization and sight and by changes in the hormone levels of caretakers. The aim of this study was to evaluate the behavioral and hormonal responses of twelve non reproductive adult male common marmosets (Callithrix jacchus) to infant cues, vocalization recordings, sight and physical contact with newborn. Six out of twelve males had previous experience in caretaking. In article 1, adult males were exposed to newborn vocalizations for 10 minutes. On control condition no sound was presented. In article 2, males were tested on two conditions: a) Control: an empty acrylic transparent box (test box) was placed in male s cage for 15 minutes, and b) Experimental: males were exposed to newborns into a closed text box for 15 minutes. The cage was kept closed to prevented from tactile, smell and acoustic stimulation by the infant on common marmoset males. In article 3, males were exposed to an open or closed text box, which allowed or not their access to and social interaction with the infants. After each observation sessions, blood samples were collected to evaluate the cortisol levels of males. In all studies, behavioral response of adult males was significantly modified by newborns sight, vocalization and physical contact. Males approached and spent more time near the sound source and showed an increase in locomotion during sound exposure. Furthermore, males approached, smelled and spent more time near the test box when the newborn was inside it. There was no difference in behavioral pattern between experienced and non-experienced males in articles 1 and 2. In article 3, behavioral pattern of males was influence by previous caretaking experience. Experienced males recovered quicker and carried the infants more than the inexperienced ones. However, inexperienced males showed a decrease in recovery latency and an increase in carrying time after successive exposure to infants. Cortisol levels changed after exposure to infant s vocalization, especially for experienced adult males. Male hormonal profile was not affected by the sight of infants neither by their previous experienced in caretaking. The occurrence of social interaction between the caretaker and infant did not modify the hormonal profile of common marmoset males; however, as much as experienced males carried the infants their cortisol levels decreased. Thus, members of a social group or potential caretakers common marmosets exposed to sensory cues from dependent infant such as vocalization, sight, smell and physical contact, changed their behavioral and hormonal responses that are physiological modulators of parental behavior in common marmoset
Resumo:
The circadian system consists of multiple oscillators organized hierarchically, with the suprachiasmatic nucleus (SCN) as the master oscillator to mammalians. There are lots of evidences that each SCN cell is an oscillator and that entrainment depends upon coupling degree between them. Knowledge of the mechanism of coupling between the SCN cells is essential for understanding entrainment and expression of circadian rhythms, and thus promote the development of new treatments for circadian rhythmicity disorders, which may cause various diseases. Some authors suggest that the dissociation model of circadian rhythm activity of rats under T22, period near the limit of synchronization, is a good model to induce internal desynchronization, and in this way, enhance knowledge about the coupling mechanism. So, in order to evaluate the pattern of the motor activity circadian rhythm of marmosets, Callithrix jacchus, in light-dark cycles at the lower limit of entrainment, two experiments were conducted: 1) 6 adult females were submitted to the LD symmetric cycles T21, T22 and T21.5 for 60, 35 and 48 days, respectively; 2) 4 male and 4 female adults were subjected to T21 for 24 days followed by 18 days of LL, and then back to T21 for 24 days followed by 14 days of LL. Vocalizations of all animals and motor activity of each one of them were continuously recorded throughout the experiments, but the vocalizations were recorded only in Experiment 1. Under the Ts shorter than 24 h, two simultaneous circadian components appeared in motor activity, one with the same period of LD cycle, named light-entrained component, and the other in free-running, named non-light-entrained component. Both components were displayed for all the animals in T21, five animals (83.3%) in T21.5 and two animals (33.3%) in T22. For vocalizations both components were observed under the three Ts. Due to the different characteristics of these components we suggest that dissociation is result of partial synchronization to the LD cycle, wherein at least one group oscillator is synchronized to the LD by relative coordination and masking processes, while at least another group of oscillators is in free-running, but also under the influence of masking by the LD. As the T21 h was the only cycle able to promote the emergence of both circadian components in circadian rhythms of all Callithrix jacchus, this was then considered the lower entrainment limit of LD cycle promoter of dissociation in circadian rhythmicity of this species, and then suggested as a non-human primate model for forced desynchronization
Resumo:
The principal zeitgeber for most of species is the light-dark photocycle (LD), though other environment factors as food availability, temperature and social cues may act. Daily adjustment of the circadian pacemaker may result from integration of environmental photic and non-photic cues with homeostatic cues. Characterization of non-photic effects on circadian timing system in diurnal mammals is scarce in relation to nocturnal, especially for ecologically significant cues. Thus, we analyzed the effect of conspecific vocalizations and darkness on circadian activity rhythm (CAR) in the diurnal primate Callithirx jacchus. With this objective 7 male adults were isolated in a room with controlled illumination, temperature (26,8 ± 0,2°C) and humidity (81,6 ± 3,6%), and partial acoustic isolation. Initially they were under LD 12:12 (~300:2 lux), and subsequently under constant illumination (~2 lux). Two pulses of conspecific vocalizations were applied in total darkness, separated by 22 days, at 7:30 h (external time) during 1 h. They induced phase delays at circadian times (CTs) 1 and 10 and predominantly phase advances at CTs 9 and 15. After that, two dark pulses were applied, separated by 14 days, during 1 h at 7:30 h (external time). These pulses induced phase delays at CTs 2, 3 and 18, predominantly phase advances at CTs 8, 10 and 19, and no change at CT 14. However, marmosets CAR showed oscillations in endogenous period and active phase duration influenced by vocalizations from animals outside the experimental room, which interfered on the phase responses to pulses. Furthermore, social masking and relative coordination with colony were observed. Therefore, phase responses obtained in this work cannot be attributed only to pulses. Afterwards, pulses of conspecific vocalizations were applied in total darkness at 19:00 h (external time), during 1 h for 5 consecutive days, and after 21 days, for 30 consecutive days, on attempt to synchronize the CAR. No animal was synchronized by these daily pulses, although oscillations in endogenous period were observed for all. This result may be due to habituation. Other possibility is the absence of social significance of the vocalizations for the animals due to random reproduction, since each vocalization has a function that could be lost by a mixture of sounds. In conclusion, conspecific vocalizations induce social masking and relative coordination in marmosets CAR, acting as weak zeitgeber
Resumo:
The use of habitat is an important part of a species biology. One resource of great importance for the survivor and reproduction of an individual is the food resource. Thus, the social interactions an animal has during the feeding activities are of extremely importance within its behavioral aspects, which represents the part of an organism trough which it interacts with the environment, adapting to changes and variations. Herons are known to form feeding aggregations of even more than thousands of individuals, in which social components of foraging have been identified and studied for several species. More profound studies of these aspects are yet to poor for the Little Blue Heron, Egretta caerulea. Therefore, the aim of this study was to describe the social behavior (display postures, vocalizations and co-specific interactions) and the territoriality of the specie during the feeding period in an area of mud bank in the estuarine system of Cananéia, south coast of São Paulo state, Brazil. The defense of a fixed and exclusive area, closest to the mangrove, trough expulsion was observed; some thing that have not yet been registered with concrete data for the specie. Higher capture and success rates, and lower investment rates (steps/min and stabs/min) were registered for individuals foraging in areas corresponding to the defended territory. This could be one of possible reasons for the establishment of territories in the area. Four display postures were registered for the specie, two of then new in the literature, which are used in the interactions between individuals; one vocalization, that apparently is important in the social context of foraging for the specie and, possibly, has a function of advertising and proclaiming the dominance position of the territorial individual within the group. A territorial individual uses three behaviors, of the ones described: expulsion, vocalization and encounter (agonistic encounter between individuals, without physical aggression). Of these, the expulsion is apparently used in the actual defense, actively; while the other two behaviors are used in a more passive way, in the maintenance of the dominance position of the individual, helping it in the defense of its territory in a less direct manner. Therefore, with the results presented in here, new components of the social utilization of the feeding resource for the Little Blue Heron were identified, incorporating aspects of the territorial behavior for a future understanding of its possible adaptive significance. And it also reinforces the importance of the social interactions of herons foraging in great aggregations, in areas ecologically important
Resumo:
Immediate-early genes (IEGs) expression has been widely used as a valuable tool to investigate brain areas activated by specific stimuli. Studies of natural vocalizations, specially in songbirds, have largely benefited from this tool. Here we used IEGs expression to investigate brain areas activated by the hearing of conspecific common marmoset (Callithrix jacchus) vocalizations and/or utterance of antiphonal vocalizations. Nine adult male common marmosets were housed in sound-attenuating cages. Six animals were stimulated with playbacks of freely recorded natural long distance vocalizations (phee calls and twitters; 45 min. total duration). Three of them vocalized in response (O/V group) and three did not (O/n group). The control group (C) was composed by the remaining animals, which neither heard the playbacks nor spontaneously vocalized. After one hour of the stimulation onset (or no stimulation, in the case of the C group), animals were perfused with 0,9% phosphate-saline buffer and 4% paraformaldehyde. The tissue was coronally sectioned at 20 micro meter in a cryostat and submitted to immunohistochemistry for the IEGs egr-1 and c-fos. Marked immunoreactivity was observed in the auditory cortex of O/V and O/n subjects and in the anterior cingulate cortex, the dorsomedial prefrontal cortex and the ventrolateral prefrontal cortex of O/V subjects. In this study, brain areas activated by vocalizations of common marmosets were investigated using IEGs expression for the first time. Our results with the egr-1 gene indicate that potential plastic phenomena occur in areas related to hearing and uttering conspecific vocalizations.
Resumo:
One of the main environmental cues for the adjustment of temporal organization of the animals is the light-dark cycle (LD), which undergoes changes in phase duration throughout the seasons. Photoperiod signaling by melatonin in mammals allows behavioral changes along the year, as in the activity-rest cycle, in mood states and in cognitive performance. The aim of this study was to investigate if common marmoset (Callithrix jacchus) exhibits behavioral changes under short and long photoperiods in a 24h cycle, assessing their individual behaviors, vocal repertoire, exploratory activity (EA), recognition memory (RM) and the circadian rhythm of locomotor activity (CRA). Eight adult marmosets were exposed to a light-dark cycle of 12:12; LD 08:16; LD 12:12 and LD 16:08, sequentially, for four weeks in each condition. Locomotor activity was recorded 24h/day by passive infrared motion detectors above the individual cages. A video camera system was programmed to record each animal, twice a week, on the first two light hours. From the videos, frequency of behaviors was registered as anxiety-like, grooming, alert, hanging position, staying in nest box and feeding using continuous focal animal sampling method. Simultaneously, the calls emitted in the experimental room were recorded by a single microphone centrally located and categorized as affiliative (whirr, chirp), contact (phee), long distance (loud shrill), agonistic (twitter) and alarm (tsik, seep, see). EA was assessed on the third hour after lights onset on the last week of each condition. In a first session, marmosets were exposed to one unfamiliar object during 15 min and 24h later, on the second session, a novel object was added to evaluate RM. Results showed that long days caused a decreased of amplitude and period variance of the CRA, but not short days. Short days decreased the total daily activity and active phase duration. On long days, active phase duration increased due to an advance of activity onset in relation to symmetric days. However, not all subjects started the activity earlier on long days. The activity offset was similar to symmetric days for the majority of marmosets. Results of EA showed that RM was not affected by short or long days, and that the marmosets exhibited a decreased in duration of EA on long days. Frequency and type of calls and frequency of anxiety-like behaviors, staying in nest box and grooming were lower on the first two light hours on long days. Considering the whole active phase of marmosets as we elucidate the results of vocalizations and behaviors, it is possible that these changes in the first two light hours are due to the shifting of temporal distribution of marmoset activities, since some animals did not advance the activity onset on long days. Consequently, the marmosets mean decreased because the sampling was not possible. In conclusion, marmosets synchronized the CRA to the tested photoperiods and as the phase angle varied a lot among marmosets it is suggested that they can use different strategies. Also, long days had an effect on activity-rest cycle and exploratory behaviors
Resumo:
The genus Herpsilochmus is composed mainly of cryptic species, among them is Herpsilochmus rufimarginatus, which is currently represented by four subspecies: H. r. rufimarginatus, H. r. frater, H. r. scapularis and H. r. exiguus. Differences in plumage and vocalization suggest that there are more than one species involved in this complex. Thus this and other subspecific taxa need urgent revision, the disjunct distribution of this species also allows us to infer the relationship between birds that occur in this biome and / or different centers of endemism. This study aims to make a taxonomic revision of the taxa included in the complex time Herpsilochmus rufimarginatus based on morphological, morphometric, vocals and geographical distribution of this bird. Besides creating distribution models current potential and make the reconstruction of the distribution bygone using ecological niche modeling, and testing the niche conservatism and divergence between different subspecies. Consultations for examination of the skins of specimens of the museums: Museum of Zoology, University of São Paulo (MZUSP), National Museum of Rio de Janeiro (MN) and Emilio Goeldi Museum of Pará (MPEG), and the skins deposited at the collection of Ornithological Federal University of Rio Grande do Norte (COUFRN). We studied the following measures length of specimens: exposed culmen, culmen and total culmen nostril, tarsus, wing and tail flattened. The voice analysis was performed with vocalizations banks and / or digital banks people where 17 voice parameters were measured. This information and more available in the literature were used to assemble a bunch of data under the limit distribution of taxa and generate ecological niche models. This analyzes carried out in the program Maxent, having as model selection criterion the AUC, and the models were greater than 0.80 are considered good models. Environmental data for the realization of the modeling were downloaded on the website of Worldclim. The morphometric information, vocals and geographic distribution point for the separation of these taxa to be considering various uni and multivariate analyzes. The potential distribution models performed well (AUC> 0.80), and its distribution associated with environmental characteristics of the Amazon forest and Atlantic forest (forests of south and southeast, northeast and forest). The reconstruction of the distribution indicates a possible contact between the southern part of the Atlantic forest in the northern part of the Amazon. The analysis of niche overlap showed a low overlap between taxa and comparisons between the null model and the generated overlay link probably occurring niche conservatism. The data suggest that the taxa that occur in the Amazon and Atlantic forest represent three distinct species
Resumo:
The maned wolf (Chrysocyon brachyurus Illiger 1815) is the biggest canid in South America and it is considered a “near threatened” species by IUCN. Because of its nocturnal, territorial and solitary habits, there are still many understudied aspects of their behavior in natural environments, including acoustic communication. In its vocal repertoire, the wolf presents a longdistance call named “roar-bark” which, according to literature, functions for spacing maintenance between individuals and/or communication between members of the reproductive pair inside the territory. In this context, this study aimed: 1) to compare four methods for detecting maned wolf’s roar-barks in recordings made in a natural environment, in order to elect the most efficient one for our project; 2) to understand the night emission pattern of these vocalizations, verifying possible weather and moon phases influences in roarbark’s emission rates; and 3) to test Passive Acoustic Monitoring as a tool to identify the presence of maned wolves in a natural environment. The study area was the Serra da Canastra National Park (Minas Gerais, Brazil), where autonomous recorders were used for sound acquisition, recording all night (from 06pm to 06am) during five days in December/2013 and every day from April to July/2014. Roar-barks’ detection methods were tested and compared regarding time needed to analyze files, number of false positives and number of correctly identified calls. The mixed method (XBAT + manual) was the most efficient one, finding 100% of vocalizations in almost half of the time the manual method did, being chosen for our data analysis. By studying roarbarks’ temporal variation we verified that the wolves vocalize more in the early hours of the evening, suggesting an important social function for those calls at the beginning of its period of most intense activity. Average wind speed negatively influenced vocalization rate, which may indicate lower sound reception of recorders or a change in behavioral patterns of wolves in high speed wind conditions. A better understanding of seasonal variation of maned wolves’ vocal activity is required, but our study already shows that it is possible to detect behavioral patterns of wild animals only by sound, validating PAM as a tool in this species’ conservation.
Resumo:
Advanced age may become a limiting factor for the maintenance of rhythms in organisms, reducing the capacity of generation and synchronization of biological rhythms. In this study, the influence of aging on the expression of endogenous periodicity and synchronization (photic and social) of the circadian activity rhythm (CAR) was evaluated in a diurnal primate, the marmoset (Callithrix jacchus). This study had two approaches: one with longitudinal design, performed with a male marmoset in two different phases: adult (three years) and older (9 y.o.) (study 1) and the second, a transversal approach, with 6 old (♂: 9.7 ± 2.0 y.o.) and 11 adults animals (♂: 4.2 ± 0.8 y.o.) (study 2). The evaluation of the photic synchronization involved two conditions in LD (natural and artificial illuminations). In study 1, the animal was subjected to the following stages: LD (12:12 ~ 350: ~ 2 lx), LL (~ 350 lx) and LD resynchronization. In the second study, the animals were initially evaluated in natural LD, and then the same sequence stages of study 1. During the LL stage in study 2, the vocalizations of conspecifics kept in natural LD on the outside of the colony were considered temporal cue to the social synchronization. The record of the activity was performed automatically at intervals of five minutes through infrared sensor and actimeters, in studies 1 and 2, respectively. In general, the aged showed a more fragmented activity pattern (> IV < H and > PSD, ANOVA, p < 0.05), lower levels of activity (ANOVA, p < 0.05) and shorter duration of active phase (ANOVA, p < 0.05) in LD conditions, when compared to adults. In natural LD, the aged presented phase delay pronounced for onset and offset of active phase (ANOVA, p < 0.05), while the adults had the active phase more adjusted to light phase. Under artificial LD, there was phase advance and greater adjustment of onset and offset of activity in relation to the LD in the aged (ANOVA, p < 0.05). In LL, there was a positive correlation between age and the endogenous period () in the first 20 days (Spearman correlation, p < 0.05), with prolonged held in two aged animals. In this condition, most adults showed free-running period of the circadian activity rhythm with < 24 h for the first 30 days and later on relative coordination mediated by auditory cues. In study 2, the cross-correlation analysis between the activity profiles of the animals in LL with control animals kept under natural LD, found that there was less social synchronization in the aged. With the resubmission to the LD, the resynchronization rate was slower in the aged (t-test; p < 0.05) and in just one aged animal there was a loss of resynchronization capability. According to the data set, it is suggested that the aging in marmosets may be related to: 1) lower amplitude and greater fragmentation of the activity, accompanied to phase delay with extension of period, caused by changes in a photic input, in the generation and behavioral expression of the CAR; 2) lower capacity of the circadian activity rhythm to photic synchronization, that can become more robust in artificial lighting conditions, possibly due to the higher light intensities at the beginning of the active phase due to the abrupt transitions between the light and dark phases; and 3) smaller capacity of non-photic synchronization for auditory cues from conspecifics, possibly due to reducing sensory inputs and responsiveness of the circadian oscillators to auditory cues, what can make the aged marmoset most vulnerable, as these social cues may act as an important supporting factor for the photic synchronization.
Resumo:
Advanced age may become a limiting factor for the maintenance of rhythms in organisms, reducing the capacity of generation and synchronization of biological rhythms. In this study, the influence of aging on the expression of endogenous periodicity and synchronization (photic and social) of the circadian activity rhythm (CAR) was evaluated in a diurnal primate, the marmoset (Callithrix jacchus). This study had two approaches: one with longitudinal design, performed with a male marmoset in two different phases: adult (three years) and older (9 y.o.) (study 1) and the second, a transversal approach, with 6 old (♂: 9.7 ± 2.0 y.o.) and 11 adults animals (♂: 4.2 ± 0.8 y.o.) (study 2). The evaluation of the photic synchronization involved two conditions in LD (natural and artificial illuminations). In study 1, the animal was subjected to the following stages: LD (12:12 ~ 350: ~ 2 lx), LL (~ 350 lx) and LD resynchronization. In the second study, the animals were initially evaluated in natural LD, and then the same sequence stages of study 1. During the LL stage in study 2, the vocalizations of conspecifics kept in natural LD on the outside of the colony were considered temporal cue to the social synchronization. The record of the activity was performed automatically at intervals of five minutes through infrared sensor and actimeters, in studies 1 and 2, respectively. In general, the aged showed a more fragmented activity pattern (> IV < H and > PSD, ANOVA, p < 0.05), lower levels of activity (ANOVA, p < 0.05) and shorter duration of active phase (ANOVA, p < 0.05) in LD conditions, when compared to adults. In natural LD, the aged presented phase delay pronounced for onset and offset of active phase (ANOVA, p < 0.05), while the adults had the active phase more adjusted to light phase. Under artificial LD, there was phase advance and greater adjustment of onset and offset of activity in relation to the LD in the aged (ANOVA, p < 0.05). In LL, there was a positive correlation between age and the endogenous period () in the first 20 days (Spearman correlation, p < 0.05), with prolonged held in two aged animals. In this condition, most adults showed free-running period of the circadian activity rhythm with < 24 h for the first 30 days and later on relative coordination mediated by auditory cues. In study 2, the cross-correlation analysis between the activity profiles of the animals in LL with control animals kept under natural LD, found that there was less social synchronization in the aged. With the resubmission to the LD, the resynchronization rate was slower in the aged (t-test; p < 0.05) and in just one aged animal there was a loss of resynchronization capability. According to the data set, it is suggested that the aging in marmosets may be related to: 1) lower amplitude and greater fragmentation of the activity, accompanied to phase delay with extension of period, caused by changes in a photic input, in the generation and behavioral expression of the CAR; 2) lower capacity of the circadian activity rhythm to photic synchronization, that can become more robust in artificial lighting conditions, possibly due to the higher light intensities at the beginning of the active phase due to the abrupt transitions between the light and dark phases; and 3) smaller capacity of non-photic synchronization for auditory cues from conspecifics, possibly due to reducing sensory inputs and responsiveness of the circadian oscillators to auditory cues, what can make the aged marmoset most vulnerable, as these social cues may act as an important supporting factor for the photic synchronization.
Resumo:
Feeding is the primary selective pressure in all forms of animals. Nutritional ecological models predict consequences of preferred and non-preferred food consumption on behavioural, physiological and morphological adaptations. At same time, socioecological models infer socio-organizarion patterns based on feeding competition faced by animals. A list of preferred foods, and inferences regarding the intensity of feeding competition and its behavioural consequences are information of much importance for management of populations in fragments. In this work we observed the feeding behavior and spatial positioning of a group of more than 100 blond capuchin monkeys (Sapajus flavius) that inhabit a fragment of Atlantic forest, surrounded by sugarcane plantation. We compared the consumption of different food items with their monthly availability in the area to define the preferred and fallback food items. We recorded the vocalizations of aggression and the inter-individual distance (area of Minimum Convex Polygon/n individuals) to infer the type of food competition experienced by animals. In the year studied the fruit feeding time correlated with top consumed fruit productivity, indicating preference for fruits. Our data indicate that the species Elaeis sp., Cecropia palmata, Inga spp. and Simarouba amara are the preferred food items in the diet. Available all year round and uniformly distributed, sugarcane was a regular item in the diet and its was characterized as a staple fallback food for this group. Although fruits are preferential food items, direct competition rate did not correlate to fruit productivity in the area, maintaining the high rates throughout the year (2.45 events/ hour). The inter-individual distance index positively correlated with rain fall indicating scramble food competition. The number of neighbours of females carrying infants was smaller when fruit productivity is low, indicating that females carrying infants are suffering increased indirect competition. Our data indicates that blond capuchins in this fragment make use of sugar cane as a staple fallback food, which evidence the importance of sugar cane landscape for the survival of this critically endangered capuchin species in fragmented habitats in Northeast Brazil. A preliminary list of preferred and important foods is offered, and can assist in the choice of trees for reforestation, better fragments to be preserved and areas of release and translocation of animals. We did not observe an increase of contest competition while using preferred foods, but when using staple FBF. This may be due the altered environment, which results in high competition food throughout the year. Both the food preference as the social and behavioral consequences of high food competition experienced by animals in this fragment must be accompanied over the years to ensure the survival of this population.
Resumo:
Feeding is the primary selective pressure in all forms of animals. Nutritional ecological models predict consequences of preferred and non-preferred food consumption on behavioural, physiological and morphological adaptations. At same time, socioecological models infer socio-organizarion patterns based on feeding competition faced by animals. A list of preferred foods, and inferences regarding the intensity of feeding competition and its behavioural consequences are information of much importance for management of populations in fragments. In this work we observed the feeding behavior and spatial positioning of a group of more than 100 blond capuchin monkeys (Sapajus flavius) that inhabit a fragment of Atlantic forest, surrounded by sugarcane plantation. We compared the consumption of different food items with their monthly availability in the area to define the preferred and fallback food items. We recorded the vocalizations of aggression and the inter-individual distance (area of Minimum Convex Polygon/n individuals) to infer the type of food competition experienced by animals. In the year studied the fruit feeding time correlated with top consumed fruit productivity, indicating preference for fruits. Our data indicate that the species Elaeis sp., Cecropia palmata, Inga spp. and Simarouba amara are the preferred food items in the diet. Available all year round and uniformly distributed, sugarcane was a regular item in the diet and its was characterized as a staple fallback food for this group. Although fruits are preferential food items, direct competition rate did not correlate to fruit productivity in the area, maintaining the high rates throughout the year (2.45 events/ hour). The inter-individual distance index positively correlated with rain fall indicating scramble food competition. The number of neighbours of females carrying infants was smaller when fruit productivity is low, indicating that females carrying infants are suffering increased indirect competition. Our data indicates that blond capuchins in this fragment make use of sugar cane as a staple fallback food, which evidence the importance of sugar cane landscape for the survival of this critically endangered capuchin species in fragmented habitats in Northeast Brazil. A preliminary list of preferred and important foods is offered, and can assist in the choice of trees for reforestation, better fragments to be preserved and areas of release and translocation of animals. We did not observe an increase of contest competition while using preferred foods, but when using staple FBF. This may be due the altered environment, which results in high competition food throughout the year. Both the food preference as the social and behavioral consequences of high food competition experienced by animals in this fragment must be accompanied over the years to ensure the survival of this population.