6 resultados para stochastic simulation method
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
One of the main activities in the petroleum engineering is to estimate the oil production in the existing oil reserves. The calculation of these reserves is crucial to determine the economical feasibility of your explotation. Currently, the petroleum industry is facing problems to analyze production due to the exponentially increasing amount of data provided by the production facilities. Conventional reservoir modeling techniques like numerical reservoir simulation and visualization were well developed and are available. This work proposes intelligent methods, like artificial neural networks, to predict the oil production and compare the results with the ones obtained by the numerical simulation, method quite a lot used in the practice to realization of the oil production prediction behavior. The artificial neural networks will be used due your learning, adaptation and interpolation capabilities
Resumo:
The work is to make a brief discussion of methods to estimate the parameters of the Generalized Pareto distribution (GPD). Being addressed the following techniques: Moments (moments), Maximum Likelihood (MLE), Biased Probability Weighted Moments (PWMB), Unbiased Probability Weighted Moments (PWMU), Mean Power Density Divergence (MDPD), Median (MED), Pickands (PICKANDS), Maximum Penalized Likelihood (MPLE), Maximum Goodness-of-fit (MGF) and the Maximum Entropy (POME) technique, the focus of this manuscript. By way of illustration adjustments were made for the Generalized Pareto distribution, for a sequence of earthquakes intraplacas which occurred in the city of João Câmara in the northeastern region of Brazil, which was monitored continuously for two years (1987 and 1988). It was found that the MLE and POME were the most efficient methods, giving them basically mean squared errors. Based on the threshold of 1.5 degrees was estimated the seismic risk for the city, and estimated the level of return to earthquakes of intensity 1.5°, 2.0°, 2.5°, 3.0° and the most intense earthquake never registered in the city, which occurred in November 1986 with magnitude of about 5.2º
Resumo:
The aim of this work was to describe the methodological procedures that were mandatory to develop a 3D digital imaging of the external and internal geometry of the analogue outcrops from reservoirs and to build a Virtual Outcrop Model (VOM). The imaging process of the external geometry was acquired by using the Laser Scanner, the Geodesic GPS and the Total Station procedures. On the other hand, the imaging of the internal geometry was evaluated by GPR (Ground Penetrating Radar).The produced VOMs were adapted with much more detailed data with addition of the geological data and the gamma ray and permeability profiles. As a model for the use of the methodological procedures used on this work, the adapted VOM, two outcrops, located at the east part of the Parnaiba Basin, were selected. On the first one, rocks from the aeolian deposit of the Piaui Formation (Neo-carboniferous) and tidal flat deposits from the Pedra de Fogo Formation (Permian), which arises in a large outcrops located between Floriano and Teresina (Piauí), are present. The second area, located at the National Park of Sete Cidades, also at the Piauí, presents rocks from the Cabeças Formation deposited in fluvial-deltaic systems during the Late Devonian. From the data of the adapted VOMs it was possible to identify lines, surfaces and 3D geometry, and therefore, quantify the geometry of interest. Among the found parameterization values, a table containing the thickness and width, obtained in canal and lobes deposits at the outcrop Paredão and Biblioteca were the more relevant ones. In fact, this table can be used as an input for stochastic simulation of reservoirs. An example of the direct use of such table and their predicted radargrams was the identification of the bounding surface at the aeolian sites from the Piauí Formation. In spite of such radargrams supply only bi-dimensional data, the acquired lines followed of a mesh profile were used to add a third dimension to the imaging of the internal geometry. This phenomenon appears to be valid for all studied outcrops. As a conclusion, the tool here presented can became a new methodology in which the advantages of the digital imaging acquired from the Laser Scanner (precision, accuracy and speed of acquisition) were combined with the Total Station procedure (precision) using the classical digital photomosaic technique
Resumo:
One of the main activities in the petroleum engineering is to estimate the oil production in the existing oil reserves. The calculation of these reserves is crucial to determine the economical feasibility of your explotation. Currently, the petroleum industry is facing problems to analyze production due to the exponentially increasing amount of data provided by the production facilities. Conventional reservoir modeling techniques like numerical reservoir simulation and visualization were well developed and are available. This work proposes intelligent methods, like artificial neural networks, to predict the oil production and compare the results with the ones obtained by the numerical simulation, method quite a lot used in the practice to realization of the oil production prediction behavior. The artificial neural networks will be used due your learning, adaptation and interpolation capabilities
Resumo:
PLCs (acronym for Programmable Logic Controllers) perform control operations, receiving information from the environment, processing it and modifying this same environment according to the results produced. They are commonly used in industry in several applications, from mass transport to petroleum industry. As the complexity of these applications increase, and as various are safety critical, a necessity for ensuring that they are reliable arouses. Testing and simulation are the de-facto methods used in the industry to do so, but they can leave flaws undiscovered. Formal methods can provide more confidence in an application s safety, once they permit their mathematical verification. We make use of the B Method, which has been successfully applied in the formal verification of industrial systems, is supported by several tools and can handle decomposition, refinement, and verification of correctness according to the specification. The method we developed and present in this work automatically generates B models from PLC programs and verify them in terms of safety constraints, manually derived from the system requirements. The scope of our method is the PLC programming languages presented in the IEC 61131-3 standard, although we are also able to verify programs not fully compliant with the standard. Our approach aims to ease the integration of formal methods in the industry through the abbreviation of the effort to perform formal verification in PLCs
Resumo:
The diffusive epidemic process (PED) is a nonequilibrium stochastic model which, exhibits a phase trnasition to an absorbing state. In the model, healthy (A) and sick (B) individuals diffuse on a lattice with diffusion constants DA and DB, respectively. According to a Wilson renormalization calculation, the system presents a first-order phase transition, for the case DA > DB. Several researches performed simulation works for test this is conjecture, but it was not possible to observe this first-order phase transition. The explanation given was that we needed to perform simulation to higher dimensions. In this work had the motivation to investigate the critical behavior of a diffusive epidemic propagation with Lévy interaction(PEDL), in one-dimension. The Lévy distribution has the interaction of diffusion of all sizes taking the one-dimensional system for a higher-dimensional. We try to explain this is controversy that remains unresolved, for the case DA > DB. For this work, we use the Monte Carlo Method with resuscitation. This is method is to add a sick individual in the system when the order parameter (sick density) go to zero. We apply a finite size scalling for estimates the critical point and the exponent critical =, e z, for the case DA > DB