34 resultados para fuzzy logic
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The area of the hospital automation has been the subject a lot of research, addressing relevant issues which can be automated, such as: management and control (electronic medical records, scheduling appointments, hospitalization, among others); communication (tracking patients, staff and materials), development of medical, hospital and laboratory equipment; monitoring (patients, staff and materials); and aid to medical diagnosis (according to each speciality). This thesis presents an architecture for a patient monitoring and alert systems. This architecture is based on intelligent systems techniques and is applied in hospital automation, specifically in the Intensive Care Unit (ICU) for the patient monitoring in hospital environment. The main goal of this architecture is to transform the multiparameter monitor data into useful information, through the knowledge of specialists and normal parameters of vital signs based on fuzzy logic that allows to extract information about the clinical condition of ICU patients and give a pre-diagnosis. Finally, alerts are dispatched to medical professionals in case any abnormality is found during monitoring. After the validation of the architecture, the fuzzy logic inferences were applied to the trainning and validation of an Artificial Neural Network for classification of the cases that were validated a priori with the fuzzy system
Resumo:
Breast cancer, despite being one of the leading causes of death among women worldwide is a disease that can be cured if diagnosed early. One of the main techniques used in the detection of breast cancer is the Fine Needle Aspirate FNA (aspiration puncture by thin needle) which, depending on the clinical case, requires the analysis of several medical specialists for the diagnosis development. However, such diagnosis and second opinions have been hampered by geographical dispersion of physicians and/or the difficulty in reconciling time to undertake work together. Within this reality, this PhD thesis uses computational intelligence in medical decision-making support for remote diagnosis. For that purpose, it presents a fuzzy method to assist the diagnosis of breast cancer, able to process and sort data extracted from breast tissue obtained by FNA. This method is integrated into a virtual environment for collaborative remote diagnosis, whose model was developed providing for the incorporation of prerequisite Modules for Pre Diagnosis to support medical decision. On the fuzzy Method Development, the process of knowledge acquisition was carried out by extraction and analysis of numerical data in gold standard data base and by interviews and discussions with medical experts. The method has been tested and validated with real cases and, according to the sensitivity and specificity achieved (correct diagnosis of tumors, malignant and benign respectively), the results obtained were satisfactory, considering the opinions of doctors and the quality standards for diagnosis of breast cancer and comparing them with other studies involving breast cancer diagnosis by FNA.
Resumo:
On this paper, it is made a comparative analysis among a controller fuzzy coupled to a PID neural adjusted by an AGwith several traditional control techniques, all of them applied in a system of tanks (I model of 2nd order non lineal). With the objective of making possible the techniques involved in the comparative analysis and to validate the control to be compared, simulations were accomplished of some control techniques (conventional PID adjusted by GA, Neural PID (PIDN) adjusted by GA, Fuzzy PI, two Fuzzy attached to a PID Neural adjusted by GA and Fuzzy MISO (3 inputs) attached to a PIDN adjusted by GA) to have some comparative effects with the considered controller. After doing, all the tests, some control structures were elected from all the tested techniques on the simulating stage (conventional PID adjusted by GA, Fuzzy PI, two Fuzzy attached to a PIDN adjusted by GA and Fuzzy MISO (3 inputs) attached to a PIDN adjusted by GA), to be implemented at the real system of tanks. These two kinds of operation, both the simulated and the real, were very important to achieve a solid basement in order to establish the comparisons and the possible validations show by the results
Resumo:
The idea of considering imprecision in probabilities is old, beginning with the Booles George work, who in 1854 wanted to reconcile the classical logic, which allows the modeling of complete ignorance, with probabilities. In 1921, John Maynard Keynes in his book made explicit use of intervals to represent the imprecision in probabilities. But only from the work ofWalley in 1991 that were established principles that should be respected by a probability theory that deals with inaccuracies. With the emergence of the theory of fuzzy sets by Lotfi Zadeh in 1965, there is another way of dealing with uncertainty and imprecision of concepts. Quickly, they began to propose several ways to consider the ideas of Zadeh in probabilities, to deal with inaccuracies, either in the events associated with the probabilities or in the values of probabilities. In particular, James Buckley, from 2003 begins to develop a probability theory in which the fuzzy values of the probabilities are fuzzy numbers. This fuzzy probability, follows analogous principles to Walley imprecise probabilities. On the other hand, the uses of real numbers between 0 and 1 as truth degrees, as originally proposed by Zadeh, has the drawback to use very precise values for dealing with uncertainties (as one can distinguish a fairly element satisfies a property with a 0.423 level of something that meets with grade 0.424?). This motivated the development of several extensions of fuzzy set theory which includes some kind of inaccuracy. This work consider the Krassimir Atanassov extension proposed in 1983, which add an extra degree of uncertainty to model the moment of hesitation to assign the membership degree, and therefore a value indicate the degree to which the object belongs to the set while the other, the degree to which it not belongs to the set. In the Zadeh fuzzy set theory, this non membership degree is, by default, the complement of the membership degree. Thus, in this approach the non-membership degree is somehow independent of the membership degree, and this difference between the non-membership degree and the complement of the membership degree reveals the hesitation at the moment to assign a membership degree. This new extension today is called of Atanassov s intuitionistic fuzzy sets theory. It is worth noting that the term intuitionistic here has no relation to the term intuitionistic as known in the context of intuitionistic logic. In this work, will be developed two proposals for interval probability: the restricted interval probability and the unrestricted interval probability, are also introduced two notions of fuzzy probability: the constrained fuzzy probability and the unconstrained fuzzy probability and will eventually be introduced two notions of intuitionistic fuzzy probability: the restricted intuitionistic fuzzy probability and the unrestricted intuitionistic fuzzy probability
Resumo:
This paper describes the design, implementation and enforcement of a system for industrial process control based on fuzzy logic and developed using Java, with support for industrial communication protocol through the OPC (Ole for Process Control). Besides the java framework, the software is completely independent from other platforms. It provides friendly and functional tools for modeling, construction and editing of complex fuzzy inference systems, and uses these logical systems in control of a wide variety of industrial processes. The main requirements of the developed system should be flexibility, robustness, reliability and ease of expansion
Resumo:
Foundation Fieldbus Industrial networks are the high standard technology which allows users to create complex control logic and totally decentralized. Although being so advanced, they still have some limitations imposed by their own technology. Attempting to solve one of these limitations, this paper describes how to design a Fuzzy controller in a Foundation Fieldbus network using their basic elements of programming, the functional blocks, so that the network remains fully independent of other devices other than the same instruments that constitute it. Moreover, in this work was developed a tool that aids this process of building the Fuzzy controller, setting the internal parameters of functional blocks and informing how many and which blocks should be used for a given structure. The biggest challenge in creating this controller is exactly the choice of blocks and how to arrange them in order to effectuate the same functions of a Fuzzy controller implemented in other kind of environment. The methodology adopted was to divide each one of the phases of a traditional Fuzzy controller and then create simple structures with the functional blocks to implement them. At the end of the work, the developed controller is compared with a Fuzzy controller implemented in a mathematical program that it has a proper tool for the development and implementation of Fuzzy controllers, obtaining comparatives graphics of performance between both
Resumo:
This works presents a proposal to make automatic the identification of energy thefts in the meter systems through Fuzzy Logic and supervisory like SCADA. The solution we find by to collect datas from meters at customers units: voltage, current, power demand, angles conditions of phasors diagrams of voltages and currents, and taking these datas by fuzzy logic with expert knowledge into a fuzzy system. The parameters collected are computed by fuzzy logic, in engineering alghorithm, and the output shows to user if the customer researched may be consuming electrical energy without to pay for it, and these feedbacks have its own membership grades. The value of this solution is a need for reduce the losses that already sets more than twenty per cent. In such a way that it is an expert system that looks for decision make with assertivity, and it looks forward to find which problems there are on site and then it wont happen problems of relationship among the utility and the customer unit. The database of an electrical company was utilized and the datas from it were worked by the fuzzy proposal and algorithm developed and the result was confirmed
Resumo:
Every day, water scarcity becomes a more serious problem and, directly affects global society. Studies are directed in order to raise awareness of the rational use of this natural asset that is essential to our survival. Only 0.007% of the water available in the world have easy access and can be consumed by humans, it can be found in rivers, lakes, etc... To better take advantage of the water used in homes and small businesses, reuse projects are often implemented, resulting in savings for customers of water utilities. The reuse projects involve several areas of engineering, like Environmental, Chemical, Electrical and Computer Engineering. The last two are responsible for the control of the process, which aims to make gray water (soapy water), and clear blue water (rain water), ideal for consumption, or for use in watering gardens, flushing, among others applications. Water has several features that should be taken into consideration when it comes to working its reuse. Some of the features are, turbidity, temperature, electrical conductivity and, pH. In this document there is a proposal to control the pH (potential Hydrogen) through a microcontroller, using the fuzzy logic as strategy of control. The controller was developed in the fuzzy toolbox of Matlab®
Resumo:
Induction motors are one of the most important equipment of modern industry. However, in many situations, are subject to inadequate conditions as high temperatures and pressures, load variations and constant vibrations, for example. Such conditions, leaving them more susceptible to failures, either external or internal in nature, unwanted in the industrial process. In this context, predictive maintenance plays an important role, where the detection and diagnosis of faults in a timely manner enables the increase of time of the engine and the possibiity of reducing costs, caused mainly by stopping the production and corrective maintenance the motor itself. In this juncture, this work proposes the design of a system that is able to detect and diagnose faults in induction motors, from the collection of electrical line voltage and current, and also the measurement of engine speed. This information will use as input to a fuzzy inference system based on rules that find and classify a failure from the variation of thess quantities
Resumo:
Traditional irrigation projects do not locally determine the water availability in the soil. Then, irregular irrigation cycles may occur: some with insufficient amount that leads to water deficit, other with excessive watering that causes lack of oxygen in plants. Due to the nonlinear nature of this problem and the multivariable context of irrigation processes, fuzzy logic is suggested to replace commercial ON-OFF irrigation system with predefined timing. Other limitation of commercial solutions is that irrigation processes either consider the different watering needs throughout plant growth cycles or the climate changes. In order to fulfill location based agricultural needs, it is indicated to monitor environmental data using wireless sensors connected to an intelligent control system. This is more evident in applications as precision agriculture. This work presents the theoretical and experimental development of a fuzzy system to implement a spatially differentiated control of an irrigation system, based on soil moisture measurement with wireless sensor nodes. The control system architecture is modular: a fuzzy supervisor determines the soil moisture set point of each sensor node area (according to the soil-plant set) and another fuzzy system, embedded in the sensor node, does the local control and actuates in the irrigation system. The fuzzy control system was simulated with SIMULINK® programming tool and was experimentally built embedded in mobile device SunSPOTTM operating in ZigBee. Controller models were designed and evaluated in different combinations of input variables and inference rules base
Resumo:
Clustering data is a very important task in data mining, image processing and pattern recognition problems. One of the most popular clustering algorithms is the Fuzzy C-Means (FCM). This thesis proposes to implement a new way of calculating the cluster centers in the procedure of FCM algorithm which are called ckMeans, and in some variants of FCM, in particular, here we apply it for those variants that use other distances. The goal of this change is to reduce the number of iterations and processing time of these algorithms without affecting the quality of the partition, or even to improve the number of correct classifications in some cases. Also, we developed an algorithm based on ckMeans to manipulate interval data considering interval membership degrees. This algorithm allows the representation of data without converting interval data into punctual ones, as it happens to other extensions of FCM that deal with interval data. In order to validate the proposed methodologies it was made a comparison between a clustering for ckMeans, K-Means and FCM algorithms (since the algorithm proposed in this paper to calculate the centers is similar to the K-Means) considering three different distances. We used several known databases. In this case, the results of Interval ckMeans were compared with the results of other clustering algorithms when applied to an interval database with minimum and maximum temperature of the month for a given year, referring to 37 cities distributed across continents
Resumo:
Intendding to understand how the human mind operates, some philosophers and psycologists began to study about rationality. Theories were built from those studies and nowadays that interest have been extended to many other areas such as computing engineering and computing science, but with a minimal distinction at its goal: to understand the mind operational proccess and apply it on agents modelling to become possible the implementation (of softwares or hardwares) with the agent-oriented paradigm where agents are able to deliberate their own plans of actions. In computing science, the sub-area of multiagents systems has progressed using several works concerning artificial intelligence, computational logic, distributed systems, games theory and even philosophy and psycology. This present work hopes to show how it can be get a logical formalisation extention of a rational agents architecture model called BDI (based in a philosophic Bratman s Theory) in which agents are capable to deliberate actions from its beliefs, desires and intentions. The formalisation of this model is called BDI logic and it is a modal logic (in general it is a branching time logic) with three access relations: B, D and I. And here, it will show two possible extentions that tranform BDI logic in a modal-fuzzy logic where the formulae and the access relations can be evaluated by values from the interval [0,1]
Resumo:
In order to make this document self-contained, we first present all the necessary theory as a background. Then we study several definitions that extended the classic bi-implication in to the domain of well stablished fuzzy logics, namely, into the [0; 1] interval. Those approaches of the fuzzy bi-implication can be summarized as follows: two axiomatized definitions, which we proved that represent the same class of functions, four defining standard (two of them proposed by us), which varied by the number of different compound operators and what restrictions they had to satisfy. We proved that those defining standard represent only two classes of functions, having one as a proper subclass of the other, yet being both a subclass of the class represented by the axiomatized definitions. Since those three clases satisfy some contraints that we judge unnecessary, we proposed a new defining standard free of those restrictions and that represents a class of functions that intersects with the class represented by the axiomatized definitions. By this dissertation we are aiming to settle the groundwork for future research on this operator.
Resumo:
Mathematical Morphology presents a systematic approach to extract geometric features of binary images, using morphological operators that transform the original image into another by means of a third image called structuring element and came out in 1960 by researchers Jean Serra and George Matheron. Fuzzy mathematical morphology extends the operators towards grayscale and color images and was initially proposed by Goetherian using fuzzy logic. Using this approach it is possible to make a study of fuzzy connectives, which allows some scope for analysis for the construction of morphological operators and their applicability in image processing. In this paper, we propose the development of morphological operators fuzzy using the R-implications for aid and improve image processing, and then to build a system with these operators to count the spores mycorrhizal fungi and red blood cells. It was used as the hypothetical-deductive methodologies for the part formal and incremental-iterative for the experimental part. These operators were applied in digital and microscopic images. The conjunctions and implications of fuzzy morphology mathematical reasoning will be used in order to choose the best adjunction to be applied depending on the problem being approached, i.e., we will use automorphisms on the implications and observe their influence on segmenting images and then on their processing. In order to validate the developed system, it was applied to counting problems in microscopic images, extending to pathological images. It was noted that for the computation of spores the best operator was the erosion of Gödel. It developed three groups of morphological operators fuzzy, Lukasiewicz, And Godel Goguen that can have a variety applications
Resumo:
The great interest in nonlinear system identification is mainly due to the fact that a large amount of real systems are complex and need to have their nonlinearities considered so that their models can be successfully used in applications of control, prediction, inference, among others. This work evaluates the application of Fuzzy Wavelet Neural Networks (FWNN) to identify nonlinear dynamical systems subjected to noise and outliers. Generally, these elements cause negative effects on the identification procedure, resulting in erroneous interpretations regarding the dynamical behavior of the system. The FWNN combines in a single structure the ability to deal with uncertainties of fuzzy logic, the multiresolution characteristics of wavelet theory and learning and generalization abilities of the artificial neural networks. Usually, the learning procedure of these neural networks is realized by a gradient based method, which uses the mean squared error as its cost function. This work proposes the replacement of this traditional function by an Information Theoretic Learning similarity measure, called correntropy. With the use of this similarity measure, higher order statistics can be considered during the FWNN training process. For this reason, this measure is more suitable for non-Gaussian error distributions and makes the training less sensitive to the presence of outliers. In order to evaluate this replacement, FWNN models are obtained in two identification case studies: a real nonlinear system, consisting of a multisection tank, and a simulated system based on a model of the human knee joint. The results demonstrate that the application of correntropy as the error backpropagation algorithm cost function makes the identification procedure using FWNN models more robust to outliers. However, this is only achieved if the gaussian kernel width of correntropy is properly adjusted.