4 resultados para constraint optimization
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
FERNANDES, Fabiano A. N. et al. Optimization of Osmotic Dehydration of Papaya of followed by air-drying. Food Research Internation, v. 39, p. 492-498, 2006.
Resumo:
This work deals with an on-line control strategy based on Robust Model Predictive Control (RMPC) technique applied in a real coupled tanks system. This process consists of two coupled tanks and a pump to feed the liquid to the system. The control objective (regulator problem) is to keep the tanks levels in the considered operation point even in the presence of disturbance. The RMPC is a technique that allows explicit incorporation of the plant uncertainty in the problem formulation. The goal is to design, at each time step, a state-feedback control law that minimizes a 'worst-case' infinite horizon objective function, subject to constraint in the control. The existence of a feedback control law satisfying the input constraints is reduced to a convex optimization over linear matrix inequalities (LMIs) problem. It is shown in this work that for the plant uncertainty described by the polytope, the feasible receding horizon state feedback control design is robustly stabilizing. The software implementation of the RMPC is made using Scilab, and its communication with Coupled Tanks Systems is done through the OLE for Process Control (OPC) industrial protocol
Resumo:
This work proposes a computational methodology to solve problems of optimization in structural design. The application develops, implements and integrates methods for structural analysis, geometric modeling, design sensitivity analysis and optimization. So, the optimum design problem is particularized for plane stress case, with the objective to minimize the structural mass subject to a stress criterion. Notice that, these constraints must be evaluated at a series of discrete points, whose distribution should be dense enough in order to minimize the chance of any significant constraint violation between specified points. Therefore, the local stress constraints are transformed into a global stress measure reducing the computational cost in deriving the optimal shape design. The problem is approximated by Finite Element Method using Lagrangian triangular elements with six nodes, and use a automatic mesh generation with a mesh quality criterion of geometric element. The geometric modeling, i.e., the contour is defined by parametric curves of type B-splines, these curves hold suitable characteristics to implement the Shape Optimization Method, that uses the key points like design variables to determine the solution of minimum problem. A reliable tool for design sensitivity analysis is a prerequisite for performing interactive structural design, synthesis and optimization. General expressions for design sensitivity analysis are derived with respect to key points of B-splines. The method of design sensitivity analysis used is the adjoin approach and the analytical method. The formulation of the optimization problem applies the Augmented Lagrangian Method, which convert an optimization problem constrained problem in an unconstrained. The solution of the Augmented Lagrangian function is achieved by determining the analysis of sensitivity. Therefore, the optimization problem reduces to the solution of a sequence of problems with lateral limits constraints, which is solved by the Memoryless Quasi-Newton Method It is demonstrated by several examples that this new approach of analytical design sensitivity analysis of integrated shape design optimization with a global stress criterion purpose is computationally efficient
Resumo:
The topology optimization problem characterize and determine the optimum distribution of material into the domain. In other words, after the definition of the boundary conditions in a pre-established domain, the problem is how to distribute the material to solve the minimization problem. The objective of this work is to propose a competitive formulation for optimum structural topologies determination in 3D problems and able to provide high-resolution layouts. The procedure combines the Galerkin Finite Elements Method with the optimization method, looking for the best material distribution along the fixed domain of project. The layout topology optimization method is based on the material approach, proposed by Bendsoe & Kikuchi (1988), and considers a homogenized constitutive equation that depends only on the relative density of the material. The finite element used for the approach is a four nodes tetrahedron with a selective integration scheme, which interpolate not only the components of the displacement field but also the relative density field. The proposed procedure consists in the solution of a sequence of layout optimization problems applied to compliance minimization problems and mass minimization problems under local stress constraint. The microstructure used in this procedure was the SIMP (Solid Isotropic Material with Penalty). The approach reduces considerably the computational cost, showing to be efficient and robust. The results provided a well defined structural layout, with a sharpness distribution of the material and a boundary condition definition. The layout quality was proporcional to the medium size of the element and a considerable reduction of the project variables was observed due to the tetrahedrycal element