4 resultados para cálculo de estructuras
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Embora tenha sido proposto que a vasculatura retínica apresenta estrutura fractal, nenhuma padronização do método de segmentação ou do método de cálculo das dimensões fractais foi realizada. Este estudo objetivou determinar se a estimação das dimensões fractais da vasculatura retínica é dependente dos métodos de segmentação vascular e dos métodos de cálculo de dimensão. Métodos: Dez imagens retinográficas foram segmentadas para extrair suas árvores vasculares por quatro métodos computacionais (“multithreshold”, “scale-space”, “pixel classification” e “ridge based detection”). Suas dimensões fractais de “informação”, de “massa-raio” e “por contagem de caixas” foram então calculadas e comparadas com as dimensões das mesmas árvores vasculares, quando obtidas pela segmentação manual (padrão áureo). Resultados: As médias das dimensões fractais variaram através dos grupos de diferentes métodos de segmentação, de 1,39 a 1,47 para a dimensão por contagem de caixas, de 1,47 a 1,52 para a dimensão de informação e de 1,48 a 1,57 para a dimensão de massa-raio. A utilização de diferentes métodos computacionais de segmentação vascular, bem como de diferentes métodos de cálculo de dimensão, introduziu diferença estatisticamente significativa nos valores das dimensões fractais das árvores vasculares. Conclusão: A estimação das dimensões fractais da vasculatura retínica foi dependente tanto dos métodos de segmentação vascular, quanto dos métodos de cálculo de dimensão utilizados
Resumo:
This article refers to a research which tries to historically (re)construct the conceptual development of the Integral and Differential calculus, taking into account its constructing model feature, since the Greeks to Newton. These models were created by the problems that have been proposed by the history and were being modified by the time the new problems were put and the mathematics known advanced. In this perspective, I also show how a number of nature philosophers and mathematicians got involved by this process. Starting with the speculations over scientific and philosophical natures done by the ancient Greeks, it culminates with Newton s work in the 17th century. Moreover, I present and analyze the problems proposed (open questions), models generated (questions answered) as well as the religious, political, economic and social conditions involved. This work is divided into 6 chapters plus the final considerations. Chapter 1 shows how the research came about, given my motivation and experience. I outline the ways I have gone trough to refine the main question and present the subject of and the objectives of the research, ending the chapter showing the theoretical bases by which the research was carried out, naming such bases as Investigation Theoretical Fields (ITF). Chapter 2 presents each one of the theoretical bases, which was introduced in the chapter 1 s end. In this discuss, I try to connect the ITF to the research. The Chapter 3 discusses the methodological choices done considering the theoretical fields considered. So, the Chapters 4, 5 and 6 present the main corpus of the research, i.e., they reconstruct the calculus history under a perspective of model building (questions answered) from the problems given (open questions), analyzing since the ancient Greeks contribution (Chapter 4), pos- Greek, especially, the Romans contribution, Hindus, Arabian, and the contribution on the Medium Age (Chapter 5). I relate the European reborn and the contribution of the philosophers and scientists until culminate with the Newton s work (Chapter 6). In the final considerations, it finally gives an account on my impressions about the development of the research as well as the results reached here. By the end, I plan out a propose of curse of Differential and Integral Calculus, having by basis the last three chapters of the article
Resumo:
This study aims to seek a more viable alternative for the calculation of differences in images of stereo vision, using a factor that reduces heel the amount of points that are considered on the captured image, and a network neural-based radial basis functions to interpolate the results. The objective to be achieved is to produce an approximate picture of disparities using algorithms with low computational cost, unlike the classical algorithms
Resumo:
Systems whose spectra are fractals or multifractals have received a lot of attention in recent years. The complete understanding of the behavior of many physical properties of these systems is still far from being complete because of the complexity of such systems. Thus, new applications and new methods of study of their spectra have been proposed and consequently a light has been thrown on their properties, enabling a better understanding of these systems. We present in this work initially the basic and necessary theoretical framework regarding the calculation of energy spectrum of elementary excitations in some systems, especially in quasiperiodic ones. Later we show, by using the Schr¨odinger equation in tight-binding approximation, the results for the specific heat of electrons within the statistical mechanics of Boltzmann-Gibbs for one-dimensional quasiperiodic systems, growth by following the Fibonacci and Double Period rules. Structures of this type have already been exploited enough, however the use of non-extensive statistical mechanics proposed by Constantino Tsallis is well suited to systems that have a fractal profile, and therefore our main objective was to apply it to the calculation of thermodynamical quantities, by extending a little more the understanding of the properties of these systems. Accordingly, we calculate, analytical and numerically, the generalized specific heat of electrons in one-dimensional quasiperiodic systems (quasicrystals) generated by the Fibonacci and Double Period sequences. The electronic spectra were obtained by solving the Schr¨odinger equation in the tight-binding approach. Numerical results are presented for the two types of systems with different values of the parameter of nonextensivity q