18 resultados para Volumetric fractal dimension
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
In this work we have investigated some aspects of the two-dimensional flow of a viscous Newtonian fluid through a disordered porous medium modeled by a random fractal system similar to the Sierpinski carpet. This fractal is formed by obstacles of various sizes, whose distribution function follows a power law. They are randomly disposed in a rectangular channel. The velocity field and other details of fluid dynamics are obtained by solving numerically of the Navier-Stokes and continuity equations at the pore level, where occurs actually the flow of fluids in porous media. The results of numerical simulations allowed us to analyze the distribution of shear stresses developed in the solid-fluid interfaces, and find algebraic relations between the viscous forces or of friction with the geometric parameters of the model, including its fractal dimension. Based on the numerical results, we proposed scaling relations involving the relevant parameters of the phenomenon, allowing quantifying the fractions of these forces with respect to size classes of obstacles. Finally, it was also possible to make inferences about the fluctuations in the form of the distribution of viscous stresses developed on the surface of obstacles.
Resumo:
The present study provides a methodology that gives a predictive character the computer simulations based on detailed models of the geometry of a porous medium. We using the software FLUENT to investigate the flow of a viscous Newtonian fluid through a random fractal medium which simplifies a two-dimensional disordered porous medium representing a petroleum reservoir. This fractal model is formed by obstacles of various sizes, whose size distribution function follows a power law where exponent is defined as the fractal dimension of fractionation Dff of the model characterizing the process of fragmentation these obstacles. They are randomly disposed in a rectangular channel. The modeling process incorporates modern concepts, scaling laws, to analyze the influence of heterogeneity found in the fields of the porosity and of the permeability in such a way as to characterize the medium in terms of their fractal properties. This procedure allows numerically analyze the measurements of permeability k and the drag coefficient Cd proposed relationships, like power law, for these properties on various modeling schemes. The purpose of this research is to study the variability provided by these heterogeneities where the velocity field and other details of viscous fluid dynamics are obtained by solving numerically the continuity and Navier-Stokes equations at pore level and observe how the fractal dimension of fractionation of the model can affect their hydrodynamic properties. This study were considered two classes of models, models with constant porosity, MPC, and models with varying porosity, MPV. The results have allowed us to find numerical relationship between the permeability, drag coefficient and the fractal dimension of fractionation of the medium. Based on these numerical results we have proposed scaling relations and algebraic expressions involving the relevant parameters of the phenomenon. In this study analytical equations were determined for Dff depending on the geometrical parameters of the models. We also found a relation between the permeability and the drag coefficient which is inversely proportional to one another. As for the difference in behavior it is most striking in the classes of models MPV. That is, the fact that the porosity vary in these models is an additional factor that plays a significant role in flow analysis. Finally, the results proved satisfactory and consistent, which demonstrates the effectiveness of the referred methodology for all applications analyzed in this study.
Resumo:
In this thesis, a frequency selective surface (FSS) consists of a two-dimensional periodic structure mounted on a dielectric substrate, which is capable of selecting signals in one or more frequency bands of interest. In search of better performance, more compact dimensions, low cost manufacturing, among other characteristics, these periodic structures have been continually optimized over time. Due to its spectral characteristics, which are similar to band-stop or band-pass filters, the FSSs have been studied and used in several applications for more than four decades. The design of an FSS with a periodic structure composed by pre-fractal elements facilitates the tuning of these spatial filters and the adjustment of its electromagnetic parameters, enabling a compact design which generally has a stable frequency response and superior performance relative to its euclidean counterpart. The unique properties of geometric fractals have shown to be useful, mainly in the production of antennas and frequency selective surfaces, enabling innovative solutions and commercial applications in microwave range. In recent applications, the FSSs modify the indoor propagation environments (emerging concept called wireless building ). In this context, the use of pre-fractal elements has also shown promising results, allowing a more effective filtering of more than one frequency band with a single-layer structure. This thesis approaches the design of FSSs using pre-fractal elements based on Vicsek, Peano and teragons geometries, which act as band-stop spatial filters. The transmission properties of the periodic surfaces are analyzed to design compact and efficient devices with stable frequency responses, applicable to microwave frequency range and suitable for use in indoor communications. The results are discussed in terms of the electromagnetic effect resulting from the variation of parameters such as: fractal iteration number (or fractal level), scale factor, fractal dimension and periodicity of FSS, according the pre-fractal element applied on the surface. The analysis of the fractal dimension s influence on the resonant properties of a FSS is a new contribution in relation to researches about microwave devices that use fractal geometry. Due to its own characteristics and the geometric shape of the Peano pre-fractal elements, the reconfiguration possibility of these structures is also investigated and discussed. This thesis also approaches, the construction of efficient selective filters with new configurations of teragons pre-fractal patches, proposed to control the WLAN coverage in indoor environments by rejecting the signals in the bands of 2.4~2.5 GHz (IEEE 802.11 b) and 5.0~6.0 GHz (IEEE 802.11a). The FSSs are initially analyzed through simulations performed by commercial software s: Ansoft DesignerTM and HFSSTM. The fractal design methodology is validated by experimental characterization of the built prototypes, using alternatively, different measurement setups, with commercial horn antennas and microstrip monopoles fabricated for low cost measurements
Resumo:
In this thesis we study some problems related to petroleum reservoirs using methods and concepts of Statistical Physics. The thesis could be divided percolation problem in random multifractal support motivated by its potential application in modelling oil reservoirs. We develped an heterogeneous and anisotropic grid that followin two parts. The first one introduce a study of the percolations a random multifractal distribution of its sites. After, we determine the percolation threshold for this grid, the fractal dimension of the percolating cluster and the critical exponents ß and v. In the second part, we propose an alternative systematic of modelling and simulating oil reservoirs. We introduce a statistical model based in a stochastic formulation do Darcy Law. In this model, the distribution of permeabilities is localy equivalent to the basic model of bond percolation
Resumo:
The complex behavior of a wide variety of phenomena that are of interest to physicists, chemists, and engineers has been quantitatively characterized by using the ideas of fractal and multifractal distributions, which correspond in a unique way to the geometrical shape and dynamical properties of the systems under study. In this thesis we present the Space of Fractals and the methods of Hausdorff-Besicovitch, box-counting and Scaling to calculate the fractal dimension of a set. In this Thesis we investigate also percolation phenomena in multifractal objects that are built in a simple way. The central object of our analysis is a multifractal object that we call Qmf . In these objects the multifractality comes directly from the geometric tiling. We identify some differences between percolation in the proposed multifractals and in a regular lattice. There are basically two sources of these differences. The first is related to the coordination number, c, which changes along the multifractal. The second comes from the way the weight of each cell in the multifractal affects the percolation cluster. We use many samples of finite size lattices and draw the histogram of percolating lattices against site occupation probability p. Depending on a parameter, ρ, characterizing the multifractal and the lattice size, L, the histogram can have two peaks. We observe that the probability of occupation at the percolation threshold, pc, for the multifractal is lower than that for the square lattice. We compute the fractal dimension of the percolating cluster and the critical exponent β. Despite the topological differences, we find that the percolation in a multifractal support is in the same universality class as standard percolation. The area and the number of neighbors of the blocks of Qmf show a non-trivial behavior. A general view of the object Qmf shows an anisotropy. The value of pc is a function of ρ which is related to its anisotropy. We investigate the relation between pc and the average number of neighbors of the blocks as well as the anisotropy of Qmf. In this Thesis we study likewise the distribution of shortest paths in percolation systems at the percolation threshold in two dimensions (2D). We study paths from one given point to multiple other points
Resumo:
The complex behavior of a wide variety of phenomena that are of interest to physicists, chemists, and engineers has been quantitatively characterized by using the ideas of fractal and multifractal distributions, which correspond in a unique way to the geometrical shape and dynamical properties of the systems under study. In this thesis we present the Space of Fractals and the methods of Hausdorff-Besicovitch, box-counting and Scaling to calculate the fractal dimension of a set. In this Thesis we investigate also percolation phenomena in multifractal objects that are built in a simple way. The central object of our analysis is a multifractal object that we call Qmf . In these objects the multifractality comes directly from the geometric tiling. We identify some differences between percolation in the proposed multifractals and in a regular lattice. There are basically two sources of these differences. The first is related to the coordination number, c, which changes along the multifractal. The second comes from the way the weight of each cell in the multifractal affects the percolation cluster. We use many samples of finite size lattices and draw the histogram of percolating lattices against site occupation probability p. Depending on a parameter, ρ, characterizing the multifractal and the lattice size, L, the histogram can have two peaks. We observe that the probability of occupation at the percolation threshold, pc, for the multifractal is lower than that for the square lattice. We compute the fractal dimension of the percolating cluster and the critical exponent β. Despite the topological differences, we find that the percolation in a multifractal support is in the same universality class as standard percolation. The area and the number of neighbors of the blocks of Qmf show a non-trivial behavior. A general view of the object Qmf shows an anisotropy. The value of pc is a function of ρ which is related to its anisotropy. We investigate the relation between pc and the average number of neighbors of the blocks as well as the anisotropy of Qmf. In this Thesis we study likewise the distribution of shortest paths in percolation systems at the percolation threshold in two dimensions (2D). We study paths from one given point to multiple other points. In oil recovery terminology, the given single point can be mapped to an injection well (injector) and the multiple other points to production wells (producers). In the previously standard case of one injection well and one production well separated by Euclidean distance r, the distribution of shortest paths l, P(l|r), shows a power-law behavior with exponent gl = 2.14 in 2D. Here we analyze the situation of one injector and an array A of producers. Symmetric arrays of producers lead to one peak in the distribution P(l|A), the probability that the shortest path between the injector and any of the producers is l, while the asymmetric configurations lead to several peaks in the distribution. We analyze configurations in which the injector is outside and inside the set of producers. The peak in P(l|A) for the symmetric arrays decays faster than for the standard case. For very long paths all the studied arrays exhibit a power-law behavior with exponent g ∼= gl.
Resumo:
In this work we present the principal fractals, their caracteristics, properties abd their classification, comparing them to Euclidean Geometry Elements. We show the importance of the Fractal Geometry in the analysis of several elements of our society. We emphasize the importance of an appropriate definition of dimension to these objects, because the definition we presently know doesn t see a satisfactory one. As an instrument to obtain these dimentions we present the Method to count boxes, of Hausdorff- Besicovich and the Scale Method. We also study the Percolation Process in the square lattice, comparing it to percolation in the multifractal subject Qmf, where we observe som differences between these two process. We analize the histogram grafic of the percolating lattices versus the site occupation probability p, and other numerical simulations. And finaly, we show that we can estimate the fractal dimension of the percolation cluster and that the percolatin in a multifractal suport is in the same universality class as standard percolation. We observe that the area of the blocks of Qmf is variable, pc is a function of p which is related to the anisotropy of Qmf
Resumo:
The complexity of the Phenomenon of fluid flow in porous way causes a difficulty in its explicit description. Different in the cases where the flow is given through a pipe, where it is possible to measure the length and diameter of the pipe and to determine their ability to flow as a function of pressure, which is a complicated task in porous way. However, we try to approach clearly the equations used to conjecture the behavior of fluid flow in porous way. We made use of the Gambit to create a fractal geometry with the fluent we give the contour´s conditions we would want to analyze the data. The triangular mesh was created; it makes interactions with the discs of different rays, as barriers putted in the geometry. This work presents the results of a simulation with a flow of viscous fluids (oilliquid). The oil flows in a porous way constructed in 2D. The behavior evaluation of the fluid flow inside the porous way was realized with graphics, images and numerical results used for different datas analysis. The study was aimed in relation at the behavior of permeability (k) for different fractal dimensions. Taking into account the preservation of porosity and increasing the fractal distribution of the discs. The results showed that k decreases when we increase the numbers of discs, although the porosity is the same for all generations of the first simulation, in other words, the permeability decreases when we increase the fractality. Well, there are strong turbulence in the flow each time we increase the number of discs and this hinders the passage of the same to the exit. These results permitted to put in evidence how the permeability (k) is affected in a porous way with obstacles distributed in a diversified form. We also note that k decreases when we increase the pressure variation (P) within geometry. So, in front of the results and the absence of bibliographic subsidies about other theories, the work realized here can possibly by considered the unpublished form to explain and reflect on how the permeability is changed when increasing the fractal dimension in a porous way
Resumo:
Difusive processes are extremely common in Nature. Many complex systems, such as microbial colonies, colloidal aggregates, difusion of fluids, and migration of populations, involve a large number of similar units that form fractal structures. A new model of difusive agregation was proposed recently by Filoche and Sapoval [68]. Based on their work, we develop a model called Difusion with Aggregation and Spontaneous Reorganization . This model consists of a set of particles with excluded volume interactions, which perform random walks on a square lattice. Initially, the lattice is occupied with a density p = N/L2 of particles occupying distinct, randomly chosen positions. One of the particles is selected at random as the active particle. This particle executes a random walk until it visits a site occupied by another particle, j. When this happens, the active particle is rejected back to its previous position (neighboring particle j), and a new active particle is selected at random from the set of N particles. Following an initial transient, the system attains a stationary regime. In this work we study the stationary regime, focusing on scaling properties of the particle distribution, as characterized by the pair correlation function ø(r). The latter is calculated by averaging over a long sequence of configurations generated in the stationary regime, using systems of size 50, 75, 100, 150, . . . , 700. The pair correlation function exhibits distinct behaviors in three diferent density ranges, which we term subcritical, critical, and supercritical. We show that in the subcritical regime, the particle distribution is characterized by a fractal dimension. We also analyze the decay of temporal correlations
Resumo:
The present study provides a methodology that gives a predictive character the computer simulations based on detailed models of the geometry of a porous medium. We using the software FLUENT to investigate the flow of a viscous Newtonian fluid through a random fractal medium which simplifies a two-dimensional disordered porous medium representing a petroleum reservoir. This fractal model is formed by obstacles of various sizes, whose size distribution function follows a power law where exponent is defined as the fractal dimension of fractionation Dff of the model characterizing the process of fragmentation these obstacles. They are randomly disposed in a rectangular channel. The modeling process incorporates modern concepts, scaling laws, to analyze the influence of heterogeneity found in the fields of the porosity and of the permeability in such a way as to characterize the medium in terms of their fractal properties. This procedure allows numerically analyze the measurements of permeability k and the drag coefficient Cd proposed relationships, like power law, for these properties on various modeling schemes. The purpose of this research is to study the variability provided by these heterogeneities where the velocity field and other details of viscous fluid dynamics are obtained by solving numerically the continuity and Navier-Stokes equations at pore level and observe how the fractal dimension of fractionation of the model can affect their hydrodynamic properties. This study were considered two classes of models, models with constant porosity, MPC, and models with varying porosity, MPV. The results have allowed us to find numerical relationship between the permeability, drag coefficient and the fractal dimension of fractionation of the medium. Based on these numerical results we have proposed scaling relations and algebraic expressions involving the relevant parameters of the phenomenon. In this study analytical equations were determined for Dff depending on the geometrical parameters of the models. We also found a relation between the permeability and the drag coefficient which is inversely proportional to one another. As for the difference in behavior it is most striking in the classes of models MPV. That is, the fact that the porosity vary in these models is an additional factor that plays a significant role in flow analysis. Finally, the results proved satisfactory and consistent, which demonstrates the effectiveness of the referred methodology for all applications analyzed in this study.
Resumo:
Although it has been suggested that retinal vasculature is a diffusion-limited aggregation (DLA) fractal, no study has been dedicated to standardizing its fractal analysis . The aims of this project was to standardize a method to estimate the fractal dimensions of retinal vasculature and to characterize their normal values; to determine if this estimation is dependent on skeletization and on segmentation and calculation methods; to assess the suitability of the DLA model and to determine the usefulness of log-log graphs in characterizing vasculature fractality . To achieve these aims, the information, mass-radius and box counting dimensions of 20 eyes vasculatures were compared when the vessels were manually or computationally segmented; the fractal dimensions of the vasculatures of 60 eyes of healthy volunteers were compared with those of 40 DLA models and the log-log graphs obtained were compared with those of known fractals and those of non-fractals. The main results were: the fractal dimensions of vascular trees were dependent on segmentation methods and dimension calculation methods, but there was no difference between manual segmentation and scale-space, multithreshold and wavelet computational methods; the means of the information and box dimensions for arteriolar trees were 1.29. against 1.34 and 1.35 for the venular trees; the dimension for the DLA models were higher than that for vessels; the log-log graphs were straight, but with varying local slopes, both for vascular trees and for fractals and non-fractals. This results leads to the following conclusions: the estimation of the fractal dimensions for retinal vasculature is dependent on its skeletization and on the segmentation and calculation methods; log-log graphs are not suitable as a fractality test; the means of the information and box counting dimensions for the normal eyes were 1.47 and 1.43, respectively, and the DLA model with optic disc seeding is not sufficient for retinal vascularization modeling
Resumo:
Embora tenha sido proposto que a vasculatura retínica apresenta estrutura fractal, nenhuma padronização do método de segmentação ou do método de cálculo das dimensões fractais foi realizada. Este estudo objetivou determinar se a estimação das dimensões fractais da vasculatura retínica é dependente dos métodos de segmentação vascular e dos métodos de cálculo de dimensão. Métodos: Dez imagens retinográficas foram segmentadas para extrair suas árvores vasculares por quatro métodos computacionais (“multithreshold”, “scale-space”, “pixel classification” e “ridge based detection”). Suas dimensões fractais de “informação”, de “massa-raio” e “por contagem de caixas” foram então calculadas e comparadas com as dimensões das mesmas árvores vasculares, quando obtidas pela segmentação manual (padrão áureo). Resultados: As médias das dimensões fractais variaram através dos grupos de diferentes métodos de segmentação, de 1,39 a 1,47 para a dimensão por contagem de caixas, de 1,47 a 1,52 para a dimensão de informação e de 1,48 a 1,57 para a dimensão de massa-raio. A utilização de diferentes métodos computacionais de segmentação vascular, bem como de diferentes métodos de cálculo de dimensão, introduziu diferença estatisticamente significativa nos valores das dimensões fractais das árvores vasculares. Conclusão: A estimação das dimensões fractais da vasculatura retínica foi dependente tanto dos métodos de segmentação vascular, quanto dos métodos de cálculo de dimensão utilizados
Resumo:
The microstrip antennas are in constant evidence in current researches due to several advantages that it presents. Fractal geometry coupled with good performance and convenience of the planar structures are an excellent combination for design and analysis of structures with ever smaller features and multi-resonant and broadband. This geometry has been applied in such patch microstrip antennas to reduce its size and highlight its multi-band behavior. Compared with the conventional microstrip antennas, the quasifractal patch antennas have lower frequencies of resonance, enabling the manufacture of more compact antennas. The aim of this work is the design of quasi-fractal patch antennas through the use of Koch and Minkowski fractal curves applied to radiating and nonradiating antenna s edges of conventional rectangular patch fed by microstrip inset-fed line, initially designed for the frequency of 2.45 GHz. The inset-fed technique is investigated for the impedance matching of fractal antennas, which are fed through lines of microstrip. The efficiency of this technique is investigated experimentally and compared with simulations carried out by commercial software Ansoft Designer used for precise analysis of the electromagnetic behavior of antennas by the method of moments and the neural model proposed. In this dissertation a study of literature on theory of microstrip antennas is done, the same study is performed on the fractal geometry, giving more emphasis to its various forms, techniques for generation of fractals and its applicability. This work also presents a study on artificial neural networks, showing the types/architecture of networks used and their characteristics as well as the training algorithms that were used for their implementation. The equations of settings of the parameters for networks used in this study were derived from the gradient method. It will also be carried out research with emphasis on miniaturization of the proposed new structures, showing how an antenna designed with contours fractals is capable of a miniaturized antenna conventional rectangular patch. The study also consists of a modeling through artificial neural networks of the various parameters of the electromagnetic near-fractal antennas. The presented results demonstrate the excellent capacity of modeling techniques for neural microstrip antennas and all algorithms used in this work in achieving the proposed models were implemented in commercial software simulation of Matlab 7. In order to validate the results, several prototypes of antennas were built, measured on a vector network analyzer and simulated in software for comparison
Resumo:
Frequency Selective Surfaces (FSS) are periodic structures in one or two dimensions that act as spatial filters, can be formed by elements of type conductors patches or apertures, functioning as filters band-stop or band-pass respectively. The interest in the study of FSS has grown through the years, because such structures meet specific requirements as low-cost, reduced dimensions and weighs, beyond the possibility to integrate with other microwave circuits. The most varied applications for such structures have been investigated, as for example, radomes, antennas systems for airplanes, electromagnetic filters for reflective antennas, absorbers structures, etc. Several methods have been used for the analysis of FSS, among them, the Wave Method (WCIP). Are various shapes of elements that can be used in FSS, as for example, fractal type, which presents a relative geometric complexity. This work has as main objective to propose a simplification geometric procedure a fractal FSS, from the analysis of influence of details (gaps) of geometry of the same in behavior of the resonance frequency. Complementarily is shown a simple method to adjust the frequency resonance through analysis of a FSS, which uses a square basic cell, in which are inserted two reentrance and dimensions these reentrance are varied, making it possible to adjust the frequency. For this, the structures are analyzed numerically, using WCIP, and later are characterized experimentally comparing the results obtained. For the two cases is evaluated, the influence of electric and magnetic fields, the latter through the electric current density vector. Is realized a bibliographic study about the theme and are presented suggestions for the continuation of this work
Resumo:
In wastewater treatment, activated sludge systems have been a technology widely applied as secondary treatment. During this step, which has a strong biological aspect, it is necessary to introduce oxygen supply for the maintenance of metabolic activity of the bacteria through the aerators. Aeration devices are responsible for most of the energy consumption in this stage. In this background, the influence of three aeration intensities (atmospheric air flow 3.5, 7.0 and 10.5 L.min-1) and the concentration of dissolved oxygen (DO) on the dimension of activated sludge flocs as well as on the efficiency of organic matter removal were assessed using a traditional activated sludge system which was fed with synthetic domestic wastewater. Samples were taken weekly from the three units that make up the system feed, aeration and storage tank in order to verify the Chemical Oxygen Demand (COD). It was established the process efficiency through a comparison between the initial and final COD. Besides the parameters already mentioned, this monitoring work on activated sludge batch system was also observed by Mixed Liquor Suspend Solids (MLSS), Volatile Suspend Solids (VSS), pH and temperature measures. The results have showed a maximum removal efficiency around 75% in the first aeration sequence and approximately 85% for the second and third one. For the first aeration, the DO concentration remained higher than 3.0 mg.L-1 and a diameter range from 10 to 60 μm was observed. In the second e third sequence, the DO concentration remained higher than 4.0 mg.L-1 with a diameter range of 10 until 200 μm. Although the sequence 1 and 2 have presented similar performances for organic matter removal, the sequence 2 promoted a regular floc size distribution and with lower values of Sludge Volumetric Index (SVI) meaning a better flocculating ability. In addition, the results reaffirmed what the literature has reported: higher DO concentrations produce flocs with greater dimensions