28 resultados para Vehicle routing problems with gains
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Worldwide, the demand for transportation services for persons with disabilities, the elderly, and persons with reduced mobility have increased in recent years. The population is aging, governments need to adapt to this reality, and this fact could mean business opportunities for companies. Within this context is inserted the Programa de Acessibilidade Especial porta a porta PRAE, a door to door public transportation service from the city of Natal-RN in Brazil. The research presented in this dissertation seeks to develop a programming model which can assist the process of decision making of managers of the shuttle. To that end, it was created an algorithm based on methods of generating approximate solutions known as heuristics. The purpose of the model is to increase the number of people served by the PRAE, given the available fleet, generating optimized schedules routes. The PRAE is a problem of vehicle routing and scheduling of dial-a-ride - DARP, the most complex type among the routing problems. The validation of the method of resolution was made by comparing the results derived by the model and the currently programming method. It is expected that the model is able to increase the current capacity of the service requests of transport
Resumo:
This work consists on the study of two important problems arising from the operations of petroleum and natural gas industries. The first problem the pipe dimensioning problem on constrained gas distribution networks consists in finding the least cost combination of diameters from a discrete set of commercially available ones for the pipes of a given gas network, such that it respects minimum pressure requirements at each demand node and upstream pipe conditions. On its turn, the second problem the piston pump unit routing problem comes from the need of defining the piston pump unit routes for visiting a number of non-emergent wells in on-shore fields, i.e., wells which don t have enough pressure to make the oil emerge to surface. The periodic version of this problem takes into account the wells re-filling equation to provide a more accurate planning in the long term. Besides the mathematical formulation of both problems, an exact algorithm and a taboo search were developed for the solution of the first problem and a theoretical limit and a ProtoGene transgenetic algorithm were developed for the solution of the second problem. The main concepts of the metaheuristics are presented along with the details of their application to the cited problems. The obtained results for both applications are promising when compared to theoretical limits and alternate solutions, either relative to the quality of the solutions or to associated running time
Resumo:
This paper aims to propose a hybrid meta-heuristics for the Heterogeneous Fleet Vehicle Routing Problem (HVRP), which is a combinatorial optimization problem NP-hard, and is characterized by the use of a limited fleet consists of different vehicles with different capacities. The hybrid method developed makes use of a memetic algorithm associated with the component optimizer Vocabulary Building. The resulting hybrid meta-heuristic was implemented in the programming language C + + and computational experiments generated good results in relation to meta-heuristic applied in isolation, proving the efficiency of the proposed method.
Resumo:
This paper presents metaheuristic strategies based on the framework of evolutionary algorithms (Genetic and Memetic) with the addition of Technical Vocabulary Building for solving the Problem of Optimizing the Use of Multiple Mobile Units Recovery of Oil (MRO units). Because it is an NP-hard problem, a mathematical model is formulated for the problem, allowing the construction of test instances that are used to validate the evolutionary metaheuristics developed
Resumo:
In this Thesis, the development of the dynamic model of multirotor unmanned aerial vehicle with vertical takeoff and landing characteristics, considering input nonlinearities and a full state robust backstepping controller are presented. The dynamic model is expressed using the Newton-Euler laws, aiming to obtain a better mathematical representation of the mechanical system for system analysis and control design, not only when it is hovering, but also when it is taking-off, or landing, or flying to perform a task. The input nonlinearities are the deadzone and saturation, where the gravitational effect and the inherent physical constrains of the rotors are related and addressed. The experimental multirotor aerial vehicle is equipped with an inertial measurement unit and a sonar sensor, which appropriately provides measurements of attitude and altitude. A real-time attitude estimation scheme based on the extended Kalman filter using quaternions was developed. Then, for robustness analysis, sensors were modeled as the ideal value with addition of an unknown bias and unknown white noise. The bounded robust attitude/altitude controller were derived based on globally uniformly practically asymptotically stable for real systems, that remains globally uniformly asymptotically stable if and only if their solutions are globally uniformly bounded, dealing with convergence and stability into a ball of the state space with non-null radius, under some assumptions. The Lyapunov analysis technique was used to prove the stability of the closed-loop system, compute bounds on control gains and guaranteeing desired bounds on attitude dynamics tracking errors in the presence of measurement disturbances. The controller laws were tested in numerical simulations and in an experimental hexarotor, developed at the UFRN Robotics Laboratory
Resumo:
The widespread growth in the use of smart cards (by banks, transport services, and cell phones, etc) has brought an important fact that must be addressed: the need of tools that can be used to verify such cards, so to guarantee the correctness of their software. As the vast majority of cards that are being developed nowadays use the JavaCard technology as they software layer, the use of the Java Modeling Language (JML) to specify their programs appear as a natural solution. JML is a formal language tailored to Java. It has been inspired by methodologies from Larch and Eiffel, and has been widely adopted as the de facto language when dealing with specification of any Java related program. Various tools that make use of JML have already been developed, covering a wide range of functionalities, such as run time and static checking. But the tools existent so far for static checking are not fully automated, and, those that are, do not offer an adequate level of soundness and completeness. Our objective is to contribute to a series of techniques, that can be used to accomplish a fully automated and confident verification of JavaCard applets. In this work we present the first steps to this. With the use of a software platform comprised by Krakatoa, Why and haRVey, we developed a set of techniques to reduce the size of the theory necessary to verify the specifications. Such techniques have yielded very good results, with gains of almost 100% in all tested cases, and has proved as a valuable technique to be used, not only in this, but in most real world problems related to automatic verification
Resumo:
Foam was developed as a novel vehicle for streptokinase with the purpose of increasing the contact time and area between the fibrinolytic and the target thrombus, which would lead to a greater therapeutic efficacy at lower doses, decreasing the drug s potential to cause bleeding. Fibrinolytic foams were prepared using CO2 and human albumin (at different v:v ratios), as the gas and liquid phases, respectively, and streptokinase at a low total dose (100,000 IU) was used as fibrinolytic agent conveyed in 1 mL of foam and in isotonic saline solution. The foams were characterized as foam stability and apparent viscosity. The thrombolytic effect of the streptokinase foam was determined in vitro as thrombus lysis and the results were compared to those of a fibrinolytic solution (prepared using the same dose of streptokinase) and foam without the fibrinolytic. In vitro tests were conducted using fresh clots were weighed and placed in test tubes kept at 37 ° C. All the samples were injected intrathrombus using a multiperforated catheter. The results showed that both foam stability and apparent viscosity increased with the increase in the CO2:albumin solution ratio and therefore, the ratio of 3:1 was used for the incorporation of streptokinase. The results of thrombus lysis showed that the streptokinase foam presented the highest thrombolytic activity (44.78 ± 9.97%) when compared to those of the streptokinase solution (32.07 ± 3.41%) and the foam without the drug (19.2 ± 7.19%). We conclude that fibrinolytic foam showed statistically significant results regarding the enhancement of the lytic activity of streptokinase compared to the effect of the prepared saline solution, thus it can be a promising alternative in the treatment of thrombosis. However, in vivo studies are needed in order to corroborate the results obtained in vitro
Resumo:
This research aims at studying the formation of internal consultants in organizational setting in the joint resolution of problems, around the conversion of knowledge. The objective of research is to understand and explain the meanings attributed by Petrobras internal consultants to their practice and training for the conversion process of tacit knowledge into explicit, around the joint resolution of their problems with their collaborators. It has directed the next question: what the meanings assigned by the consultants of Unidade de Negócios Rio Grande do Norte e Ceara (UN-RNCE) in Knowledge Management (KM), for their interventionist and formative practices in problem solving, as well as conversion of tacit knowledge in explicit? This paper has assumed that there is a dual logic integrated into its daily practices: solving troubles and converting knowledge. The thesis has considered the daily practices of these consultants are characterized as epistemic spaces and permanent education through the conversion of knowledge. It has adopted the principles of multi-referential approach as foundations, regarding the translation of a variety of angles, perspectives and prospects which allow the interpretation and understanding of complex issues that are part of conversion of knowledge. The understanding and explanation of the senses are based on the methodology of the comprehensive interview; taking ownership is the sensitive listening for comprehensive interpretation of oral discourses of ten consultants, in addition to the autoscopy that putting into practice, thus, the stance of the researcher as an intellectual craftsman. Furthermore, it has assessed that the limits and possibilities for training and learning in the conversion of knowledge arise, on one hand from a predominantly driven training culture by the paradigm of technical rationality and one the other hand, from a set of relationship to knowledge and relation to know , revealed in the search for training in other dimensions. There are tensions between the local and global demands located in a situation marked by a systemic organization of knowledge. However, the context is perceived by researchers as impregnated by the discontinuity, unpredictability and uncertainty; mobilizing a number of elements necessary for the mediation in training practices of these consultants. Finally, it has set an instrumental and technological support, restricting the formation and undermining the position of the consultancy as nuclear function in Knowledge Management
Resumo:
The objective of analyze the shift of the working process of the ESF team in care of children with disabilities, from awareness-raising actions. It is a qualitative study, with the action-research method. Thirteen health professionals were involved from two teams of ESF unit area of the Unidade de Saúde da Família Dr. Chico Porto (UBSFCP) in Mossoró, from March to August 2011. Data were analyzed following the direction of freirean s thematic analysis. In the situational diagnosis of the current reality of CwD assistance in that UBSFCP, through participant observation and application of semi-structured interviews with professionals, we realize that despite these actions carry some assistance to the CwD, in practice few are used for inclusion and accessibility. The monitoring of the CwD is done through individual consultations by each team professional, home visits when possible, both ruled on the complaints and problems, with little solving in the used actions. Since the need for a change in the treatment model and training requirements as pointed out by professionals in the interview, then we decided to build the proposed of training suggested by the multidisciplinary team and put together collectively the achievement of this moment in all its phases. In the step of implementation (action), aspects related to the current situation in Brazil and Mossoró (Laws, policies and health care) for the CwD and CwD Assistance and their family in the ESF in the first two moments of the first training (action) were contemplate. On the second day we discussed the specialized care to CwD, contribution of the Handicapped Parents and Friends Association of Mossoró and in a second moment a workshop was held in which awareness for inclusion of CwD and actions of ESF were discussed. All these moments were discussed and collectively constructed. In the evaluation, we found that implementation (action) allowed to the professional the comprehension of new understandings about people with disabilities, on ways to include, guiding, caring, watching, and mainly to have a new vision on health assistance of the CwD, expanding assistance beyond clinical aspects and recognizing the educational aspects of the rights and duties of citizens and the inclusion of these children in the social spaces area. As difficulties, we face the need for some professionals to be absent to attend another job, solve personal problems, and little or no participation. Thus, during this action-research, the subjects were able to realize the importance of carrying out their practice to the quality of life for him and to the one they care
Resumo:
The progresses of the Internet and telecommunications have been changing the concepts of Information Technology IT, especially with regard to outsourcing services, where organizations seek cost-cutting and a better focus on the business. Along with the development of that outsourcing, a new model named Cloud Computing (CC) evolved. It proposes to migrate to the Internet both data processing and information storing. Among the key points of Cloud Computing are included cost-cutting, benefits, risks and the IT paradigms changes. Nonetheless, the adoption of that model brings forth some difficulties to decision-making, by IT managers, mainly with regard to which solutions may go to the cloud, and which service providers are more appropriate to the Organization s reality. The research has as its overall aim to apply the AHP Method (Analytic Hierarchic Process) to decision-making in Cloud Computing. There to, the utilized methodology was the exploratory kind and a study of case applied to a nationwide organization (Federation of Industries of RN). The data collection was performed through two structured questionnaires answered electronically by IT technicians, and the company s Board of Directors. The analysis of the data was carried out in a qualitative and comparative way, and we utilized the software to AHP method called Web-Hipre. The results we obtained found the importance of applying the AHP method in decision-making towards the adoption of Cloud Computing, mainly because on the occasion the research was carried out the studied company already showed interest and necessity in adopting CC, considering the internal problems with infrastructure and availability of information that the company faces nowadays. The organization sought to adopt CC, however, it had doubt regarding the cloud model and which service provider would better meet their real necessities. The application of the AHP, then, worked as a guiding tool to the choice of the best alternative, which points out the Hybrid Cloud as the ideal choice to start off in Cloud Computing. Considering the following aspects: the layer of Infrastructure as a Service IaaS (Processing and Storage) must stay partly on the Public Cloud and partly in the Private Cloud; the layer of Platform as a Service PaaS (Software Developing and Testing) had preference for the Private Cloud, and the layer of Software as a Service - SaaS (Emails/Applications) divided into emails to the Public Cloud and applications to the Private Cloud. The research also identified the important factors to hiring a Cloud Computing provider
Resumo:
A Quadrotor is an Unmanned Aerial Vehicle (UAV) equipped with four rotors distributed on a simple mechanical "X"form structure. The aim of this work is to build and stabilize a Quadrotor aircraft in the roll, pitch and yaw angles at a certain altitude. The stabilization control approach is based on a transformation in the input variables in order to perform a decoupled control. The proposed strategy is based on breaking the control problem into two hierarchical levels: A lower level, object of this work, maintains the desired altitude an angles of the vehicle while the higher level establishes appropriate references to the lower level, performing the desired movements. A hardware and software architecture was specially developed and implemented for an experimental prototype used to test and validate the proposed control approach
Resumo:
This work deals with the development of an experimental study on a power supply of high frequency that provides the toch plasmica to be implemented in PLASPETRO project, which consists of two static converters developed by using Insulated Gate Bipolar Transistor (IGBT). The drivers used to control these keys are triggered by Digital Signal Processor (DSP) through optical fibers to reduce problems with electromagnetic interference (EMI). The first stage consists of a pre-regulator in the form of an AC to DC converter with three-phase boost power factor correction which is the main theme of this work, while the second is the source of high frequency itself. A series-resonant inverter consists of four (4) cell inverters operating in a frequency around 115 kHz each one in soft switching mode, alternating itself to supply the load (plasma torch) an alternating current with a frequency of 450 kHz. The first stage has the function of providing the series-resonant inverter a DC voltage, with the value controlled from the power supply provided by the electrical system of the utility, and correct the power factor of the system as a whole. This level of DC bus voltage at the output of the first stage will be used to control the power transferred by the inverter to the load, and it may vary from 550 VDC to a maximum of 800 VDC. To control the voltage level of DC bus driver used a proportional integral (PI) controller and to achieve the unity power factor it was used two other proportional integral currents controllers. Computational simulations were performed to assist in sizing and forecasting performance. All the control and communications needed to stage supervisory were implemented on a DSP
Resumo:
This work shows a study about the Generalized Predictive Controllers with Restrictions and their implementation in physical plants. Three types of restrictions will be discussed: restrictions in the variation rate of the signal control, restrictions in the amplitude of the signal control and restrictions in the amplitude of the Out signal (plant response). At the predictive control, the control law is obtained by the minimization of an objective function. To consider the restrictions, this minimization of the objective function is done by the use of a method to solve optimizing problems with restrictions. The chosen method was the Rosen Algorithm (based on the Gradient-projection). The physical plants in this study are two didactical systems of water level control. The first order one (a simple tank) and another of second order, which is formed by two tanks connected in cascade. The codes are implemented in C++ language and the communication with the system to be done through using a data acquisition panel offered by the system producer
Resumo:
This paper presents an evaluative study about the effects of using a machine learning technique on the main features of a self-organizing and multiobjective genetic algorithm (GA). A typical GA can be seen as a search technique which is usually applied in problems involving no polynomial complexity. Originally, these algorithms were designed to create methods that seek acceptable solutions to problems where the global optimum is inaccessible or difficult to obtain. At first, the GAs considered only one evaluation function and a single objective optimization. Today, however, implementations that consider several optimization objectives simultaneously (multiobjective algorithms) are common, besides allowing the change of many components of the algorithm dynamically (self-organizing algorithms). At the same time, they are also common combinations of GAs with machine learning techniques to improve some of its characteristics of performance and use. In this work, a GA with a machine learning technique was analyzed and applied in a antenna design. We used a variant of bicubic interpolation technique, called 2D Spline, as machine learning technique to estimate the behavior of a dynamic fitness function, based on the knowledge obtained from a set of laboratory experiments. This fitness function is also called evaluation function and, it is responsible for determining the fitness degree of a candidate solution (individual), in relation to others in the same population. The algorithm can be applied in many areas, including in the field of telecommunications, as projects of antennas and frequency selective surfaces. In this particular work, the presented algorithm was developed to optimize the design of a microstrip antenna, usually used in wireless communication systems for application in Ultra-Wideband (UWB). The algorithm allowed the optimization of two variables of geometry antenna - the length (Ls) and width (Ws) a slit in the ground plane with respect to three objectives: radiated signal bandwidth, return loss and central frequency deviation. These two dimensions (Ws and Ls) are used as variables in three different interpolation functions, one Spline for each optimization objective, to compose a multiobjective and aggregate fitness function. The final result proposed by the algorithm was compared with the simulation program result and the measured result of a physical prototype of the antenna built in the laboratory. In the present study, the algorithm was analyzed with respect to their success degree in relation to four important characteristics of a self-organizing multiobjective GA: performance, flexibility, scalability and accuracy. At the end of the study, it was observed a time increase in algorithm execution in comparison to a common GA, due to the time required for the machine learning process. On the plus side, we notice a sensitive gain with respect to flexibility and accuracy of results, and a prosperous path that indicates directions to the algorithm to allow the optimization problems with "η" variables
Resumo:
Artificial neural networks are usually applied to solve complex problems. In problems with more complexity, by increasing the number of layers and neurons, it is possible to achieve greater functional efficiency. Nevertheless, this leads to a greater computational effort. The response time is an important factor in the decision to use neural networks in some systems. Many argue that the computational cost is higher in the training period. However, this phase is held only once. Once the network trained, it is necessary to use the existing computational resources efficiently. In the multicore era, the problem boils down to efficient use of all available processing cores. However, it is necessary to consider the overhead of parallel computing. In this sense, this paper proposes a modular structure that proved to be more suitable for parallel implementations. It is proposed to parallelize the feedforward process of an RNA-type MLP, implemented with OpenMP on a shared memory computer architecture. The research consistes on testing and analizing execution times. Speedup, efficiency and parallel scalability are analyzed. In the proposed approach, by reducing the number of connections between remote neurons, the response time of the network decreases and, consequently, so does the total execution time. The time required for communication and synchronization is directly linked to the number of remote neurons in the network, and so it is necessary to investigate which one is the best distribution of remote connections