87 resultados para Transesterificação enzimática

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sugar esters are substances which possess surfactant, antifungical and bactericidal actions and can be obtained through two renewable sources of raw materials: sugars and vegetable oils. Their excellent biodegradability, allied to lhe fact that they are non toxic, insipid, inodorous, biocompatible, no-ionic, digestible and because they can resist to adverse conditions of temperature, pH and salinity, explain lhe crescent use of these substances in several sections of lhe industry. The objective of this thesis was to synthesize and characterize surfactants and polymers containing sugar branched in their structures, through enzymatic transesterification of vinyl esters and sugars, using alkaline protease from Bacillus subtilis as catalyst, in organic medium (DMF).Three types of sugars were used: L-arabinose, D-glucose and sucrose and two types of vinyl esters: vinyl laurate and vinyl adipate. Aiming to reach high conversions from substrates to products for a possible future large scale industrial production, a serie of variables was optimized, through Design of Experiments (DOE), using Response Surface Methodology (RSM).The investigated variables were: (1) enzyme concentration; (2) molar reason of substrates; (3) water/solvent rale; (4) temperature and (5) time. We obtained six distinct sugar esters: 5-0-lauroyl L-arabinose, 6-0-lauroyl D-glucose, 1'-O-lauroyl sucrose, 5-0-vinyladipoyl L-arabinose, 6-0-vinyladipoyl D-glucose and 1 '-O-vinyladipoyl sucrose, being lhe last three polymerizable. The progress of lhe reaction was monitored by HPLC analysis, through lhe decrease of sugar concentration in comparison to lhe blank. Qualitative analysis by TLC confirmed lhe formation of lhe products. In lhe purification step, two methodologies were adopted: (1) chromatographic column and (2) extraction with hot acetone. The acylation position and lhe chemical structure were determined by 13C-RMN. The polymerization of lhe three vinyl sugar esters was possible, through chemical catalysis, using H2O2 and K2S2O8 as initiators, at 60°C, for 24 hours. IR spectra of lhe monomers and respective polymers were compared revealing lhe disappearance of lhe vinyl group in lhe polymer spectra. The molar weights of lhe polymers were determined by GPC and presented lhe following results: poly (5-0-vinyladipoyl L-arabinose): Mw = 7.2 X 104; PD = 2.48; poly (6-0-vinyladipoyl D-glucose): Mw = 2.7 X 103; PD = 1.75 and poly (1'-O-vinyladipoyl sucrose): Mw = 4.2 X 104; PD = 6.57. The six sugar esters were submitted to superficial tension tests for determination of the critical micelle concentrations (CMC), which varied from 122 to 167 ppm. Finally, a study of applicability of these sugar esters, as lubricants for completion fluids of petroleum wells was' accomplished through comparative analysis of lhe efficiency of these sugar esters, in relation to three commercial lubricants. The products synthesized in this thesis presented equivalent or superior action to lhe tested commercial products

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sugar esters are substances which possess surfactant, antifungical and bactericidal actions and can be obtained through two renewable sources of raw materials: sugars and vegetable oils. Their excellent biodegradability, allied to lhe fact that they are non toxic, insipid, inodorous, biocompatible, no-ionic, digestible and because they can resist to adverse conditions of temperature, pH and salinity, explain lhe crescent use of these substances in several sections of lhe industry. The objective of this thesis was to synthesize and characterize surfactants and polymers containing sugar branched in their structures, through enzymatic transesterification of vinyl esters and sugars, using alkaline protease from Bacillus subtilis as catalyst, in organic medium (DMF).Three types of sugars were used: L-arabinose, D-glucose and sucrose and two types of vinyl esters: vinyl laurate and vinyl adipate. Aiming to reach high conversions from substrates to products for a possible future large scale industrial production, a serie of variables was optimized, through Design of Experiments (DOE), using Response Surface Methodology (RSM).The investigated variables were: (1) enzyme concentration; (2) molar reason of substrates; (3) water/solvent rale; (4) temperature and (5) time. We obtained six distinct sugar esters: 5-0-lauroyl L-arabinose, 6-0-lauroyl D-glucose, 1'-O-lauroyl sucrose, 5-0-vinyladipoyl L-arabinose, 6-0-vinyladipoyl D-glucose and 1 '-O-vinyladipoyl sucrose, being lhe last three polymerizable. The progress of lhe reaction was monitored by HPLC analysis, through lhe decrease of sugar concentration in comparison to lhe blank. Qualitative analysis by TLC confirmed lhe formation of lhe products. In lhe purification step, two methodologies were adopted: (1) chromatographic column and (2) extraction with hot acetone. The acylation position and lhe chemical structure were determined by 13C-RMN. The polymerization of lhe three vinyl sugar esters was possible, through chemical catalysis, using H2O2 and K2S2O8 as initiators, at 60°C, for 24 hours. IR spectra of lhe monomers and respective polymers were compared revealing lhe disappearance of lhe vinyl group in lhe polymer spectra. The molar weights of lhe polymers were determined by GPC and presented lhe following results: poly (5-0-vinyladipoyl L-arabinose): Mw = 7.2 X 104; PD = 2.48; poly (6-0-vinyladipoyl D-glucose): Mw = 2.7 X 103; PD = 1.75 and poly (1'-O-vinyladipoyl sucrose): Mw = 4.2 X 104; PD = 6.57. The six sugar esters were submitted to superficial tension tests for determination of the critical micelle concentrations (CMC), which varied from 122 to 167 ppm. Finally, a study of applicability of these sugar esters, as lubricants for completion fluids of petroleum wells was' accomplished through comparative analysis of lhe efficiency of these sugar esters, in relation to three commercial lubricants. The products synthesized in this thesis presented equivalent or superior action to lhe tested commercial products

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the growth and development of modern society, arises the need to search for new raw materials and new technologies which present the "clean" characteristic, and do not harm the environment, but can join the energy needs of industry and transportation. The Moringa oleifera Lam, plant originating from India, and currently present in the Brazilian Northeast, presents itself as a multi-purpose plant, can be used as a coagulant in water treatment, as a natural remedy and as a feedstock for biodiesel production. In this work, Moringa has been used as a raw material for studies on the extraction and subsequently in the synthesis of biodiesel. Studies have been conducted on various techniques of Moringa oil extraction (solvents, mechanical pressing and enzymatic), being specially developed an experimental design for the aqueous extraction with the aid of the enzyme Neutrase© 0.8 L, with the aim of analyzing the influence variable pH (5.5-7.5), temperature (45-55°C), time (16-24 hours) and amount of catalyst (2-5%) on the extraction yield. In relation to study of the synthesis of biodiesel was initially carried out a conventional transesterification (50°C, KOH as a catalyst, methanol and 60 minutes reaction). Next, a study was conducted using the technique of in situ transesterification by using an experimental design variables as temperature (30-60°C), catalyst amount (2-5%), and molar ratio oil / ethanol (1:420-1:600). The extraction technique that achieved the highest extraction yield (35%) was the one that used hexane as a solvent. The extraction using 32% ethanol obtained by mechanical pressing and extraction reached 25% yield. For the enzymatic extraction, the experimental design indicated that the extraction yield was most affected by the effect of the combination of temperature and time. The maximum yield obtained in this extraction was 16%. After the step of obtaining the oil was accomplished the synthesis of biodiesel by the conventional method and the in situ technique. The method of conventional transesterification was obtained a content of 100% and esters by in situ technique was also obtained in 100% in the experimental point 7, with a molar ratio oil / alcohol 1:420, Temperature 60°C in 5% weight KOH with the reaction time of 1.5 h. By the experimental design, it was found that the variable that most influenced the ester content was late the percentage of catalyst. By physico-chemical analysis it was observed that the biodiesel produced by the in situ method fell within the rules of the ANP, therefore this technique feasible, because does not require the preliminary stage of oil extraction and achieves high levels of esters

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crude glycerine is a raw material that can be used in a wide variety of products. Even with all the impurities inherent in the process of being obtained, the crude glycerin is already in a marketable product. However, the market is much more favorable to the commercialization of purified glycerine. The glycerin is a byproduct gotten from the process of transesterification of waste oils and fats in the production of biodiesel. More recently, the deployment of the new Federal Law of Brazil, related to the implementation of energy resources, forces, from 2008, the increase of 2% biodiesel in diesel common with prospects for 5% (B5). Therefore, it is indispensable that new routes of purification as well as new markets are developed. The objective of this work was to purify, through ion exchange, the crude glycerin, obtained from the reaction of transesterification of cottonseed oil. The cottonseed oil was characterized as the fatty acid composition and physical-chemical properties. The process of ion exchange was conducted in batch. In this process were used strong cation, low anion resins and a mixed resin used to de-ionize water. The purified glycerin was characterized as the content of metals. Tests were performed with activated charcoal adsorption, and for this, it was made tests of time contact with coal as well as quantity of coal used. The time of activation, the amount of the activation solution, the contact time of the glycerol solution in resins, the amount and type of resin applied were evaluated. Considering the analysis made with activated charcoal, when the glycerin solution was treated using the resins individually it was observed that in the conditions for treatment with 10 g of resin, 5 hours of contact with each resin and 50 mL of glycerin solution, its conductivity decreased to a cationic resin, increased to the anionic resin and had a variable value with respect to resin mixed. In the treatment in series, there was a constant decrease in the conductivity of the solution of glycerin. Considering two types of treatment, in series and individually, the content of glycerol in glycerin pre-purified solution with the different resins varied from 12,46 to 29.51% (diluted solution). In analysis performed without the use of activated charcoal, the behavior of the conductivity of the solution of glycerin were similar to results for treatment with activated charcoal, both in series as individually. The solution of glycerin pre-purified had a glycerol content varying from 8.3 to 25.7% (diluted solution). In relation to pH, it had a behavior in accordance with the expected: acid for the glycerin solution treated with cationic resin, basic when the glycerin solution was treated with the anionic resin and neutral when treated with the mixed resin, independent of the kind of procedure used (with or without coal, resins individually or in series). In relation to the color of the glycerin pre-purified solution, the resin that showed the best result was the anionic (colorless), however this does not mean that the solution is more in pure glycerol. The chromatographic analysis of the solutions obtained after the passage through the resins indicated that the treatment was effective by the presence of only one component (glycerol), not considering the solvent of the analysis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extended storage of refrigerated milk can lead to reduced quality of raw and processed milk, which is a consequence of the growth and metabolic activities of psychrotrophic bacteria, able to grow under 7oC or lower temperatures. Although most of these microorganisms are destroyed by heat treatment, some have the potential to produce termoresistant proteolytic and lipolytic enzymes that can survive even UHT processing and reduce the processed products quality. Recently, the IN 51 determineds that milk should be refrigerated and stored at the farm what increased the importance of this group of microorganisms. In this work, psychrotrophic bacteria were isolated from 20 communitarian bulk tanks and 23 individual bulk tanks from dairy farms located at Zona da Mata region of Minas Gerais State and from southeastern Rio de Janeiro. Selected milk dilutions were plated on standard agar and after incubation for 10 days at 7oC, five colonies were isolated, firstly using nutrient agar and after using McConkey agar for 24 hours at 21oC. The isolates were identified by morphology, Gram stain method, catalase production, fermentative/oxidative metabolism and by API 20E, API 20NE, API Staph, API Coryne or API 50 CH (BioMerieux). In order to ensure reproductibility, API was repeated for 50% of the isolates. Species identification was considered when APILAB indexes reached 75% or higher. 309 strains were isolated, 250 Gram negative and 59 Gram positive. 250 Gram negative isolates were identified as: Acinetobacter spp. (39), Aeromonas spp. (07), A. Hydrophila (16), A. sobria (1), A. caviae (1), Alcaligenes feacalis (1), Burkholderia cepacia (12), Chryseomonas luteola (3), Enterobacter sp. (1), Ewingella americana(6), Hafnia alvei (7), Klebsiella sp. (1), Klebsiella oxytoca (10), Yersinia spp. (2), Methylobacterium mesophilicum (1), Moraxella spp. (4), Pantoea spp. (16), Pasteurella sp. (1), Pseudomonas spp. (10), P. fluorescens (94), P. putida (3), Serratia spp. (3), Sphigomonas paucomobilis (1). Five isolates kept unidentified. Pseudomonas was the predominant bacteria found (43%) and P. fluorescens the predominant species (37.6%), in accordance with previous reports. Qualitative analysis of proteolytic and lipolytic activity was based on halo formation using caseinate agar and tributirina agar during 72 hours at 21oC and during 10 days at 4°C, 10oC and 7°C. Among 250 Gram negative bacteria found, 104 were identified as Pseudomonas spp. and 60,57% of this group showed proteolytic and lipolytic acitivities over all four studied temperatures. 20% of Acinetobacter, Aeromonas, Alcaligenes, Burkholderia, Chryseomonas, Methylobacterium, Moraxella presented only lipolytic activity. Some isolates presented enzymatic activity in one or more studied temperatures. Among Gram positive bacteria, 30.51% were proteolytic and lipolytic at 10oC, 8.47% were proteolytic at 7oC, 10oC, and 21oC, 8.47% were proteolytic at all studied temperatures (4oC, 7oC, 10oC and 21oC) and 3.38% were proteolytic only at 21oC. At 4oC, only one isolate showed proteolytic activity and six isolates were lipolytic. In relation to Gram negative microorganisms, 4% were proteolytic and lipolytic at 7oC, 10oC and 21oC, 10% were proteolytic at 10oC and 4.4% were lipolytic at 4oC, 7oC, 10oC and 21oC, while 6.4% of all isolates were proteolytic and lipolytic at 10oC and 21oC as well as lipolytic at 4oC and 7oC. These findings are in accordance with previous researches that pointed out Pseudomonas as the predominant psycrotrophic flora in stored refrigerated raw milk

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microalgae are microscopic photosynthetic organisms that grow rapidly and in different environmental conditions due to their simple cellular structure. The cultivation of microalgae is a biological system capable of storing solar energy through the production of organic compounds via photosynthesis, and these species presents growth faster than land plants, enabling higher biomass yield. Thus, it is understood that the cultivation of these photosynthetic mechanisms is part of a relevant proposal, since, when compared to other oil producing raw materials, they have a significantly higher productivity, thus being a raw material able to complete the current demand by biodiesel . The overall aim of the thesis was to obtain biofuel via transesterification process of bio oil from the microalgae Isochrysis galbana. The specific objective was to estimate the use of a photobioreactor at the laboratory level, for the experiments of microalgae growth; evaluating the characteristics of biodiesel from microalgae produced by in situ transesterification process; studying a new route for disinfection of microalgae cultivation, through the use of the chemical agent sodium hypochlorite. The introduction of this new method allowed obtaining the kinetics of the photobioreactor for cultivation, besides getting the biomass needed for processing and analysis of experiments in obtaining biodiesel. The research showed acceptable results for the characteristics observed in the bio oil obtained, which fell within the standards of ANP Resolution No. 14, dated 11.5.2012 - 18.5.2012. Furthermore, it was demonstrated that the photobioreactor designed meet expectations about study culture growth and has contributed largely to the development of the chosen species of microalgae. Thus, it can be seen that the microalgae Isochrysis galbana showed a species with potential for biodiesel production

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The obtaining of the oligosaccharides from chitosanase, has showed interest of the pharmaceutical area in the last years due their countless functional properties. Although, the great challenge founded out is how to keep a constant and efficient production. The alternative proposed by this present work was to study the viability to develop an integrated technology, with reduced costs. The strategy used was the obtaining of the oligomers through enzymatic hydrolysis using chitosanolitic enzymes obtained straight from the fermented broth, eliminating this way the phases involved in the enzymes purification. The two chitosanases producing strains chosen for the work, Paenibacillus chitinolyticus and Paenibacillus ehimensis, were evaluated according to the behavior in the culture medium with simple sugar and in relation to the pH medium variations. The culture medium for the chitosanases induction and production was developed through addition of soluble chitosan as carbon source. The soluble chitosan was obtained using hydrochloric acid solution 0.1 M and afterwards neutralization with NaOH 10 M. The enzymatic complexes were obtained from induction process in culture medium with 0.2% of soluble chitosan. The enzymes production was verified soon after the consumption of the simple sugars by the microorganisms and the maximum chitosanolitic activity obtained in the fermented broth by Paenibacillus chitinolyticus was 249 U.L-1 and by Paenibacillus ehimensis was 495U.L-1. These two enzymatic complexes showed stability when stored at 20°C for about 91 days. The enzymes in the fermented broth by Paenibacillus chitinolyticus, when exposed at temperature of 55°C and pH 6.0, where the activity is maximum, showed 50% lost of activity after 3 hours Meanwhile, for the complex produced by Paenibacillus ehimensis, after 6 days of exposure, it was detected 100% of the activity. The chito-oligosaccharides obtained by the hydrolysis of a 1% chitosan solution, using the enzymatic complex produced by Paenibacillus chitinolyticus showed larger quantity after 9 hours hydrolysis and using the complex produced by Paenibacillus ehimensis after 20 minutes was observed the chito-ligosacharides with polymerization degree between 3 and 6 units. Evaluating these results, it was verified that the production of chitosan-oligosaccharides is possible, using a simultaneous process

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enzymes have been widely used in biosynthesis/transformation of organic compounds in substitution the classic synthetic methods. This work is the first writing in literature of enzymatic synthesis for attainment the biossurfactants, the use glucose sucrose, ricinoleic acid e castor oil as substratum, and as biocatalyst, used immobilized lipase Thermomyces lanuginose, Rhizomucor miehei and the Candida antarctica lipase B; alkaline protease and neutral protease from Bacillus subtillis and yeast Saccharomyces cerevisiaeI. The analysis of HPLC (high performance liquid chromatography) showed that highest conversions were reached of used the alkaline protease from Bacillus subtillis. Laboratory tests, to evaluate the applicability, indicated that the produced biosurfactantes had good stability in presence of salts (NaCl) and temperature (55 e 25°C), they are effective in the reduction of the superficial tension and contac angle, but they have little foaming capacity, when compared with traditional detergents. These results suggest that the prepared surfactants have potential application as wetting agent and perforation fluid stabilizer

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study proposes to find a biodiesel through transesterification of rice bran oil with KI/Al2O3 checking the influence of two types of alumina (Amorphous and Crystalline) for conversion into methyl esters. The catalyst was synthesized by the wet impregnation method. Adding 30 mL of 35% KI(aq.) in 10 g of alumina, under stirring at 80 °C for 3 hours. The reaction conditions used in this study were optimized, with a molar ratio methanol:oil of 15:1, 8 h of reaction time and reflux temperature. The catalyst amount was varied in the range of 1 to 5 % wt. The solid catalysts materials were analyzed by: x-ray diffraction (XRD), thermogravimetry (TG), N2 adsorption/desorption, scanning electron microscopy (SEM) and basicity, for the identification of its structure and composition, verifying the presence of basic sites. The results showed that Al2O3(A) presents an amorphous structure, high surface area and a better catalytic activity, in relation to the catalyst synthesized with Al2O3(C) support that proved to have a more crystalline structure, having as well, a lesser surface area, enabling difficulties for the incorporation of active sites. The obtained biodiesel with 5% wt. KI/Al2O3(A) presented physicochemical properties within the standards specified by the Resolution No 7/2008 ANP and obtained the best reaction yield with 95.2%, according to quantitative measurement from the TG, which showed 96.2% conversion into methyl esters. It was furthermore found that with the increasing amount of the quantity of the catalyst in the reaction, there was also an increase in the ester content obtained. The specific mass and the kinematic viscosity were reduced with the increase of the amount of quantity of the catalyst, indicating an increase in the conversion of triglycerides

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work aimed first, the theoretical study of tetrahedral intermediate stability formed from carbonyl addition reactions using the second (MP2) and third (MP3) order Møller–Plesset perturbation theory. Linear correlations between electronic energy difference of reactions with Wiberg Indexes and C-O bond lengths were obtained, and was observed that the stability of adducts formed depends directly of electronic density involved between these atoms. The knowing of electronic parameters of these structures has an important hole due to the large use on reactions that in his course forms this tetrahedral intermediate. Employing the ONIOM (B3LYP:AMBER) methodology, was evaluated the stereoselectivity of a enzymatic reaction between CAL B enzyme and a long chain ester. In this study, were obtained the electronic energies of ground state and intermediate state of transesterification rate-determing step from two possible proquirals faces Re and Si. The objective was study the enantioselectivity of CAL B and rationalizes it using quantum theory of atoms in molecules (QTAIM). A theoretical study employing inorganic compounds was performed using ab initio CBS-QB3 method aiming to find a link between thermodynamic and equilibrium involving acids and bases. The results observed showed an excellent relationship between difference in Gibbs free energy, ΔG of acid dissociation reaction and ΔG of hydrolysis reaction of the corresponding conjugate base. It was also observed, a relationship between ΔG of hydrolysis reaction of conjugate acids and their corresponding atomic radius showing that stability plays an important role in hydrolysis reactions. The importance of solvation in acid/base behavior when compared to theoretical and experimental ΔG´s also was evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Brazil many types of bioproducts and agroindustrial waste are generated currently, such as cacashew apple bagasse and coconut husk, for example. The final disposal of these wastes causes serious environmental issues. In this sense, waste lignocellulosic content, as the shell of the coconut is a renewable and abundant raw material in which its use has an increased interest mainly for the 2nd generation ethanol production. The hydrolysis of cellulose to reducing sugars such as glucose and xylose is catalysed by a group of enzymes called cellulases. However, the main bottleneck in the enzymatic hydrolysis of cellulose is the significant deactivation of the enzyme that shows irreversible adsorption mechanism leading to reduction of the cellulose adsorption onto cellulose. Studies have shown that the use of surfactants can modify the surface property of the cellulose therefore minimizing the irreversible binding. The main objective of the present study was to evaluate the influence of chemical and biological surfactants during the hydrolysis of coconut husk which was subjected to two pre-treatment in order to improve the accessibility of the enzymes to the cellulose, removing this way, part of the lignin and hemicellulose present in the structure of the material. The pre-treatments applied to coconut bagasse were: Acid/Alkaline using 0.6M H2SO4 followed by 1M NaOH, and the one with Alkaline Hydrogen Peroxide at a concentration of 7.35% (v/v) and pH 11.5. Both the material no treatment and pretreated were characterized using analysis of diffraction X-ray (XRD), Scanning Electron Microscopy (SEM) and methods established by NREL. The influence of both surfactants, chemical and biological, was used at concentrations below the critical micelle concentration (CMC), and the concentrations equal to the CMC. The application of pre-treatment with coconut residue was efficient for the conversion to glucose, as well as for the production of total reducing sugars, it was possible to observe that the pretreatment fragmented the structure as well as disordered the fibers. Regarding XRD analysis, a significant increase in crystallinity index was observed for pretreated bagasse acid/alkali (51.1%) compared to the no treatment (31.7%), while that for that treated with PHA, the crystallinity index was slightly lower, around 29%. In terms of total reducing sugars it was not possible to observe a significant difference between the hydrolysis carried out without the use of surfactant compared to the addition of Triton and rhamnolipid. However, by observing the conversions achieved during the hydrolysis, it was noted that the best conversion was using the rhamnolipíd for the husk pretreated with acid/alkali, reaching a value of 33%, whereas using Triton the higher conversion was 23.8%. The coconut husk is a residue which can present a high potential to the 2nd generation ethanol production, being the rhamonolipid a very efficient biosurfactant for use as an adjuvant in the enzymatic process in order to act on the material structure reducing its recalcitrance and therefore improving the conditions of access for enzymes to the substrate increasing thus the conversion of cellulose to glucose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Brazil many types of bioproducts and agroindustrial waste are generated currently, such as cacashew apple bagasse and coconut husk, for example. The final disposal of these wastes causes serious environmental issues. In this sense, waste lignocellulosic content, as the shell of the coconut is a renewable and abundant raw material in which its use has an increased interest mainly for the 2nd generation ethanol production. The hydrolysis of cellulose to reducing sugars such as glucose and xylose is catalysed by a group of enzymes called cellulases. However, the main bottleneck in the enzymatic hydrolysis of cellulose is the significant deactivation of the enzyme that shows irreversible adsorption mechanism leading to reduction of the cellulose adsorption onto cellulose. Studies have shown that the use of surfactants can modify the surface property of the cellulose therefore minimizing the irreversible binding. The main objective of the present study was to evaluate the influence of chemical and biological surfactants during the hydrolysis of coconut husk which was subjected to two pre-treatment in order to improve the accessibility of the enzymes to the cellulose, removing this way, part of the lignin and hemicellulose present in the structure of the material. The pre-treatments applied to coconut bagasse were: Acid/Alkaline using 0.6M H2SO4 followed by 1M NaOH, and the one with Alkaline Hydrogen Peroxide at a concentration of 7.35% (v/v) and pH 11.5. Both the material no treatment and pretreated were characterized using analysis of diffraction X-ray (XRD), Scanning Electron Microscopy (SEM) and methods established by NREL. The influence of both surfactants, chemical and biological, was used at concentrations below the critical micelle concentration (CMC), and the concentrations equal to the CMC. The application of pre-treatment with coconut residue was efficient for the conversion to glucose, as well as for the production of total reducing sugars, it was possible to observe that the pretreatment fragmented the structure as well as disordered the fibers. Regarding XRD analysis, a significant increase in crystallinity index was observed for pretreated bagasse acid/alkali (51.1%) compared to the no treatment (31.7%), while that for that treated with PHA, the crystallinity index was slightly lower, around 29%. In terms of total reducing sugars it was not possible to observe a significant difference between the hydrolysis carried out without the use of surfactant compared to the addition of Triton and rhamnolipid. However, by observing the conversions achieved during the hydrolysis, it was noted that the best conversion was using the rhamnolipíd for the husk pretreated with acid/alkali, reaching a value of 33%, whereas using Triton the higher conversion was 23.8%. The coconut husk is a residue which can present a high potential to the 2nd generation ethanol production, being the rhamonolipid a very efficient biosurfactant for use as an adjuvant in the enzymatic process in order to act on the material structure reducing its recalcitrance and therefore improving the conditions of access for enzymes to the substrate increasing thus the conversion of cellulose to glucose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work studies the involved enzymatic way in the metabolism of glycosaminoglycans sulfateds in the mollusc Pomacea sp. Had been identified endoglycosidases and exoglycosidases in the enzymatic extract of the mollusc Pomacea sp by means of hydrolysis activity in condroitim sulphate of whale cartilage and of the p-Nitrofenil-β-glucuronide, respectively. The enzymatic extracts qere obtained of Pomacea sp. being used of 0.1 sodium acetate buffer, pH 5.0 and later centrifugated the 8,000 x g and the presents proteins in the sobrenadante were submitted to the fractionament with two crescents ammonium sulphate concentrations, the visualized activity biggest in the F2 fraction (50-80%). The β-glucuronidase (F3) was isolated in gel chromatography filtration Biogel 1.5m, the purification degree was ratified in Chromatography Liquid of high efficiency (HPLC). The enzyme was purificated 6.362,5 times with 35,6% yield. The β -glucuronidase isolated in this work showed a molecular mass of 100 kDa, determined for eletroforese in poliacrilamida gel . The determination of the ideal kinetic parameters for the catalysis of the p-nitrofenil- β -glucuronide for β-glucuronidase, showed excellent activity in pH 5,0 and temperature 65ºC for 6 hours and apparent Km of 72 x 10-2 mM. It is necessary for the total degradation of 3mM of p-N-β-glucoronide, the amount of 1,2μg of ss-glucuronidase. The BaCl2 increased the activity of ss-glucuronidase, and the activity was inhibited completely by the composites SDS and NaH2PO4

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Serines proteinases inhibitors (PIs) are widely distributed in nature and are able to inhibit both in vitro and in vivo enzymatic activites. Seed PIs in than leguminous are classified in seven families, Bowman-Birk and Kunitz type families that most studied representing an important role in the first line of defense toward insects pests. Some Kunitz type inhibitors possess activities serine and cysteine for proteinases named bifunctional inhibitor, as ApTKI the inhibitor isolate from seed of Adenanthera pavonina. The A. pavonina inhibitor presenting the uncommon property and was used for interaction studies between proteinases serine (trypsin) and cysteine (papain). In order to determinate the in vitro interaction of ApTKI against enzymes inhibitor purification was carried cut by using chromatographic techniques and inhibition assays. The 3D model of the bifunctional inhibitor ApTKI was constructed SWISS-MODEL program by homology modeling using soybean trypsin inhibitor (STI, pdb:1ba7), as template which presented 40% of identity to A. pavonina inhibitor. Model quality was evaluated by PROCHECK program. Moreover in silico analyzes of formed complex between the enzymes and ApTKI was evaluated by HEX 4.5 program. In vitro results confirmed the inhibitory assays, where the inhibitor presented the ability to simultaneously inhibit trypsin and papain. The residues encountered in the inhibitor model of folder structural three-dimensional that make contact to enzymes target coud explain the specificity pattern against serine and cysteine proteinases

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A β-D-N-acetilglucosaminidase extracted and partially isolated from crustacean Artemia franciscana by ammonium sulfate precipitation and filtration gel chromatography Bio Gel A 1.5m. the enzyme was immobilized on ferromagnetic Dacron yielding a insoluble active derivative with 5.0 units/mg protein and 10.35% of the soluble enzyme activity. β-D-N-acetilglucosaminidase-ferromagnetic Dacron was easily removed from the reaction mixture by a magnetic field, it was reused for ten times without loss in its activity. The ferromagnetic Dacron was better activated at pH 5.0. The particles visualized at scanning electron microscope (SEM) had presented different sizes, varying between 721nm and 100µm. Infra red confirmed immobilization on support, as showed by primary amino peaks at 1640 and 1560 cm-1 . The immobilize enzyme presented Km of 2.32 ± 0.48 mM and optimum temperature of 50°C. Bought presented the same thermal stable of the soluble enzyme and larger enzymatic activity at pH 5.5. β-D-N-acetilglucosaminidase-Dacron ferromagnético showed sensible for some íons as the silver (AgNO3), with loss of activity. The β-D-N acetilglucosaminidase activity for mercury chloride (HgCl2), whom is one of the most toxic substance joined in nature, it was presented activity already diminished at 0,01mM and lost total activity at 4mM, indicating sensitivity for this type of metal. β-D-N-acetilglucosaminidase-ferromagnetic Dacron showed degradative capacity on heparan sulfate, the enzyme still demonstrated degradative capacity on heparan sulphate, suggesting a possible application to produce fractions of this glycosaminoglycan