9 resultados para Square-lattice photonic crystal
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The main purpose of this dissertation, consists of the study and analysis of the PBG (Photonic Band Gap )..tecnology incorporated in optical fiber structures. So, we'l1 present a complete PBG structure theory, and folowing this, we'l1 present also a chapter for convencional optical fiber, due to the need to construct the base theory of them, and latter a more complete work about photonic crystal fiber. Finaly, we'l1 show the results of the signals , dispersion, and obtained curves under the right dimensions according to the required signals, for convencional optical and photonic crystal fiber. Knowing that PBG crystals with low losses act as perfect mirrors for forbidden frequences and knowing that the persence of structures of PBG as substrates, brings some desirable characteristics such as spontaneous emition supression and superficial waves. We' 11 show according to these characteristics its applications in telecomunication. Therefore, the enphasis of this work is to show that the optical fibers are the only practible thing to integrate the enormous quantity of data and video at intemet' s market, developing, manipulating, changing, and multiplexing the optical fibers chanels in an area where we expect that the photonic crystals has an important hole, since the photonic crystals can be projected and made to avoid losses in the bands of certain wavelength which permits the increase in efficiency ofthe optical components projected with crystals. A sequence of this work would be the utilisation of the PBG structures in the new system of optical network without fiber developed by Bell laboratories of the lucent tecnology, last year using light rays for transmiting information through the air. The new system of optical networks without fiber will permit sending the data of 15 cd-rooms in less then one second, what represents 65 times more information than those transmitted through the actual radio frequences
Resumo:
The complex behavior of a wide variety of phenomena that are of interest to physicists, chemists, and engineers has been quantitatively characterized by using the ideas of fractal and multifractal distributions, which correspond in a unique way to the geometrical shape and dynamical properties of the systems under study. In this thesis we present the Space of Fractals and the methods of Hausdorff-Besicovitch, box-counting and Scaling to calculate the fractal dimension of a set. In this Thesis we investigate also percolation phenomena in multifractal objects that are built in a simple way. The central object of our analysis is a multifractal object that we call Qmf . In these objects the multifractality comes directly from the geometric tiling. We identify some differences between percolation in the proposed multifractals and in a regular lattice. There are basically two sources of these differences. The first is related to the coordination number, c, which changes along the multifractal. The second comes from the way the weight of each cell in the multifractal affects the percolation cluster. We use many samples of finite size lattices and draw the histogram of percolating lattices against site occupation probability p. Depending on a parameter, ρ, characterizing the multifractal and the lattice size, L, the histogram can have two peaks. We observe that the probability of occupation at the percolation threshold, pc, for the multifractal is lower than that for the square lattice. We compute the fractal dimension of the percolating cluster and the critical exponent β. Despite the topological differences, we find that the percolation in a multifractal support is in the same universality class as standard percolation. The area and the number of neighbors of the blocks of Qmf show a non-trivial behavior. A general view of the object Qmf shows an anisotropy. The value of pc is a function of ρ which is related to its anisotropy. We investigate the relation between pc and the average number of neighbors of the blocks as well as the anisotropy of Qmf. In this Thesis we study likewise the distribution of shortest paths in percolation systems at the percolation threshold in two dimensions (2D). We study paths from one given point to multiple other points
Resumo:
The complex behavior of a wide variety of phenomena that are of interest to physicists, chemists, and engineers has been quantitatively characterized by using the ideas of fractal and multifractal distributions, which correspond in a unique way to the geometrical shape and dynamical properties of the systems under study. In this thesis we present the Space of Fractals and the methods of Hausdorff-Besicovitch, box-counting and Scaling to calculate the fractal dimension of a set. In this Thesis we investigate also percolation phenomena in multifractal objects that are built in a simple way. The central object of our analysis is a multifractal object that we call Qmf . In these objects the multifractality comes directly from the geometric tiling. We identify some differences between percolation in the proposed multifractals and in a regular lattice. There are basically two sources of these differences. The first is related to the coordination number, c, which changes along the multifractal. The second comes from the way the weight of each cell in the multifractal affects the percolation cluster. We use many samples of finite size lattices and draw the histogram of percolating lattices against site occupation probability p. Depending on a parameter, ρ, characterizing the multifractal and the lattice size, L, the histogram can have two peaks. We observe that the probability of occupation at the percolation threshold, pc, for the multifractal is lower than that for the square lattice. We compute the fractal dimension of the percolating cluster and the critical exponent β. Despite the topological differences, we find that the percolation in a multifractal support is in the same universality class as standard percolation. The area and the number of neighbors of the blocks of Qmf show a non-trivial behavior. A general view of the object Qmf shows an anisotropy. The value of pc is a function of ρ which is related to its anisotropy. We investigate the relation between pc and the average number of neighbors of the blocks as well as the anisotropy of Qmf. In this Thesis we study likewise the distribution of shortest paths in percolation systems at the percolation threshold in two dimensions (2D). We study paths from one given point to multiple other points. In oil recovery terminology, the given single point can be mapped to an injection well (injector) and the multiple other points to production wells (producers). In the previously standard case of one injection well and one production well separated by Euclidean distance r, the distribution of shortest paths l, P(l|r), shows a power-law behavior with exponent gl = 2.14 in 2D. Here we analyze the situation of one injector and an array A of producers. Symmetric arrays of producers lead to one peak in the distribution P(l|A), the probability that the shortest path between the injector and any of the producers is l, while the asymmetric configurations lead to several peaks in the distribution. We analyze configurations in which the injector is outside and inside the set of producers. The peak in P(l|A) for the symmetric arrays decays faster than for the standard case. For very long paths all the studied arrays exhibit a power-law behavior with exponent g ∼= gl.
Resumo:
A real space renormalization group method is used to investigate the criticality (phase diagrams, critical expoentes and universality classes) of Z(4) model in two and three dimensions. The values of the interaction parameters are chosen in such a way as to cover the complete phase diagrams of the model, which presents the following phases: (i) Paramagnetic (P); (ii) Ferromagnetic (F); (iii) Antiferromagnetic (AF); (iv) Intermediate Ferromagnetic (IF) and Intermediate Antiferromagnetic (IAF). In the hierarquical lattices, generated by renormalization the phase diagrams are exact. It is also possible to obtain approximated results for square and simple cubic lattices. In the bidimensional case a self-dual lattice is used and the resulting phase diagram reproduces all the exact results known for the square lattice. The Migdal-Kadanoff transformation is applied to the three dimensional case and the additional phases previously suggested by Ditzian et al, are not found
Resumo:
In this work we have studied, by Monte Carlo computer simulation, several properties that characterize the damage spreading in the Ising model, defined in Bravais lattices (the square and the triangular lattices) and in the Sierpinski Gasket. First, we investigated the antiferromagnetic model in the triangular lattice with uniform magnetic field, by Glauber dynamics; The chaotic-frozen critical frontier that we obtained coincides , within error bars, with the paramegnetic-ferromagnetic frontier of the static transition. Using heat-bath dynamics, we have studied the ferromagnetic model in the Sierpinski Gasket: We have shown that there are two times that characterize the relaxation of the damage: One of them satisfy the generalized scaling theory proposed by Henley (critical exponent z~A/T for low temperatures). On the other hand, the other time does not obey any of the known scaling theories. Finally, we have used methods of time series analysis to study in Glauber dynamics, the damage in the ferromagnetic Ising model on a square lattice. We have obtained a Hurst exponent with value 0.5 in high temperatures and that grows to 1, close to the temperature TD, that separates the chaotic and the frozen phases
Resumo:
The new technique for automatic search of the order parameters and critical properties is applied to several well-know physical systems, testing the efficiency of such a procedure, in order to apply it for complex systems in general. The automatic-search method is combined with Monte Carlo simulations, which makes use of a given dynamical rule for the time evolution of the system. In the problems inves¬tigated, the Metropolis and Glauber dynamics produced essentially equivalent results. We present a brief introduction to critical phenomena and phase transitions. We describe the automatic-search method and discuss some previous works, where the method has been applied successfully. We apply the method for the ferromagnetic fsing model, computing the critical fron¬tiers and the magnetization exponent (3 for several geometric lattices. We also apply the method for the site-diluted ferromagnetic Ising model on a square lattice, computing its critical frontier, as well as the magnetization exponent f3 and the susceptibility exponent 7. We verify that the universality class of the system remains unchanged when the site dilution is introduced. We study the problem of long-range bond percolation in a diluted linear chain and discuss the non-extensivity questions inherent to long-range-interaction systems. Finally we present our conclusions and possible extensions of this work
Resumo:
In this work, we present a theoretical study of the propagation of electromagnetic waves in multilayer structures called Photonic Crystals. For this purpose, we investigate the phonon-polariton band gaps in periodic and quasi-periodic (Fibonacci-type) multilayers made up of both positive and negative refractive index materials in the terahertz (THz) region. The behavior of the polaritonic band gaps as a function of the multilayer period is investigated systematically. We use a theoretical model based on the formalism of transfer matrix in order to simplify the algebra involved in obtaining the dispersion relation of phonon-polaritons (bulk and surface modes). We also present a quantitative analysis of the results, pointing out the distribution of the allowed polaritonic bandwidths for high Fibonacci generations, which gives good insight about their localization and power laws. We calculate the emittance spectrum of the electromagnetic radiation, in THZ frequency, normally and obliquely incident (s and p polarized modes) on a one-dimensional multilayer structure composed of positive and negative refractive index materials organized periodically and quasi-periodically. We model the negative refractive index material by a effective medium whose electric permittivity is characterized by a phonon-polariton frequency dependent dielectric function, while for the magnetic permeability we have a Drude like frequency-dependent function. Similarity to the one-dimensional photonic crystal, this layered effective medium, called polaritonic Crystals, allow us the control of the electromagnetic propagation, generating regions named polaritonic bandgap. The emittance spectra are determined by means of a well known theoretical model based on Kirchoff s second law, together with a transfer matrix formalism. Our results shows that the omnidirectional band gaps will appear in the THz regime, in a well defined interval, that are independent of polarization in periodic case as well as in quasiperiodic case
Resumo:
In this work we present the principal fractals, their caracteristics, properties abd their classification, comparing them to Euclidean Geometry Elements. We show the importance of the Fractal Geometry in the analysis of several elements of our society. We emphasize the importance of an appropriate definition of dimension to these objects, because the definition we presently know doesn t see a satisfactory one. As an instrument to obtain these dimentions we present the Method to count boxes, of Hausdorff- Besicovich and the Scale Method. We also study the Percolation Process in the square lattice, comparing it to percolation in the multifractal subject Qmf, where we observe som differences between these two process. We analize the histogram grafic of the percolating lattices versus the site occupation probability p, and other numerical simulations. And finaly, we show that we can estimate the fractal dimension of the percolation cluster and that the percolatin in a multifractal suport is in the same universality class as standard percolation. We observe that the area of the blocks of Qmf is variable, pc is a function of p which is related to the anisotropy of Qmf
Resumo:
Difusive processes are extremely common in Nature. Many complex systems, such as microbial colonies, colloidal aggregates, difusion of fluids, and migration of populations, involve a large number of similar units that form fractal structures. A new model of difusive agregation was proposed recently by Filoche and Sapoval [68]. Based on their work, we develop a model called Difusion with Aggregation and Spontaneous Reorganization . This model consists of a set of particles with excluded volume interactions, which perform random walks on a square lattice. Initially, the lattice is occupied with a density p = N/L2 of particles occupying distinct, randomly chosen positions. One of the particles is selected at random as the active particle. This particle executes a random walk until it visits a site occupied by another particle, j. When this happens, the active particle is rejected back to its previous position (neighboring particle j), and a new active particle is selected at random from the set of N particles. Following an initial transient, the system attains a stationary regime. In this work we study the stationary regime, focusing on scaling properties of the particle distribution, as characterized by the pair correlation function ø(r). The latter is calculated by averaging over a long sequence of configurations generated in the stationary regime, using systems of size 50, 75, 100, 150, . . . , 700. The pair correlation function exhibits distinct behaviors in three diferent density ranges, which we term subcritical, critical, and supercritical. We show that in the subcritical regime, the particle distribution is characterized by a fractal dimension. We also analyze the decay of temporal correlations