14 resultados para Simulação de Monte Carlo
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
We studied the Ising model ferromagnetic as spin-1/2 and the Blume-Capel model as spin-1, > 0 on small world network, using computer simulation through the Metropolis algorithm. We calculated macroscopic quantities of the system, such as internal energy, magnetization, specific heat, magnetic susceptibility and Binder cumulant. We found for the Ising model the same result obtained by Koreans H. Hong, Beom Jun Kim and M. Y. Choi [6] and critical behavior similar Blume-Capel model
Resumo:
The Monte Carlo method is accurate and is relatively simple to implement for the solution of problems involving complex geometries and anisotropic scattering of radiation as compared with other numerical techniques. In addition, differently of what happens for most of numerical techniques, for which the associated simulations computational time tends to increase exponentially with the complexity of the problems, in the Monte Carlo the increase of the computational time tends to be linear. Nevertheless, the Monte Carlo solution is highly computer time consuming for most of the interest problems. The Multispectral Energy Bundle model allows the reduction of the computational time associated to the Monte Carlo solution. The referred model is here analyzed for applications in media constituted for nonparticipating species and water vapor, which is an important emitting species formed during the combustion of hydrocarbon fuels. Aspects related to computer time optimization are investigated the model solutions are compared with benchmark line-by-line solutions
Resumo:
High-precision calculations of the correlation functions and order parameters were performed in order to investigate the critical properties of several two-dimensional ferro- magnetic systems: (i) the q-state Potts model; (ii) the Ashkin-Teller isotropic model; (iii) the spin-1 Ising model. We deduced exact relations connecting specific damages (the difference between two microscopic configurations of a model) and the above mentioned thermodynamic quanti- ties which permit its numerical calculation, by computer simulation and using any ergodic dynamics. The results obtained (critical temperature and exponents) reproduced all the known values, with an agreement up to several significant figures; of particular relevance were the estimates along the Baxter critical line (Ashkin-Teller model) where the exponents have a continuous variation. We also showed that this approach is less sensitive to the finite-size effects than the standard Monte-Carlo method. This analysis shows that the present approach produces equal or more accurate results, as compared to the usual Monte Carlo simulation, and can be useful to investigate these models in circumstances for which their behavior is not yet fully understood
Resumo:
The ferromagnetic and antiferromagnetic Ising model on a two dimensional inhomogeneous lattice characterized by two exchange constants (J1 and J2) is investigated. The lattice allows, in a continuous manner, the interpolation between the uniforme square (J2 = 0) and triangular (J2 = J1) lattices. By performing Monte Carlo simulation using the sequential Metropolis algorithm, we calculate the magnetization and the magnetic susceptibility on lattices of differents sizes. Applying the finite size scaling method through a data colappse, we obtained the critical temperatures as well as the critical exponents of the model for several values of the parameter α = J2 J1 in the [0, 1] range. The ferromagnetic case shows a linear increasing behavior of the critical temperature Tc for increasing values of α. Inwhich concerns the antiferromagnetic system, we observe a linear (decreasing) behavior of Tc, only for small values of α; in the range [0.6, 1], where frustrations effects are more pronunciated, the critical temperature Tc decays more quickly, possibly in a non-linear way, to the limiting value Tc = 0, cor-responding to the homogeneous fully frustrated antiferromagnetic triangular case.
Resumo:
In this work we have studied, by Monte Carlo computer simulation, several properties that characterize the damage spreading in the Ising model, defined in Bravais lattices (the square and the triangular lattices) and in the Sierpinski Gasket. First, we investigated the antiferromagnetic model in the triangular lattice with uniform magnetic field, by Glauber dynamics; The chaotic-frozen critical frontier that we obtained coincides , within error bars, with the paramegnetic-ferromagnetic frontier of the static transition. Using heat-bath dynamics, we have studied the ferromagnetic model in the Sierpinski Gasket: We have shown that there are two times that characterize the relaxation of the damage: One of them satisfy the generalized scaling theory proposed by Henley (critical exponent z~A/T for low temperatures). On the other hand, the other time does not obey any of the known scaling theories. Finally, we have used methods of time series analysis to study in Glauber dynamics, the damage in the ferromagnetic Ising model on a square lattice. We have obtained a Hurst exponent with value 0.5 in high temperatures and that grows to 1, close to the temperature TD, that separates the chaotic and the frozen phases
Resumo:
The new technique for automatic search of the order parameters and critical properties is applied to several well-know physical systems, testing the efficiency of such a procedure, in order to apply it for complex systems in general. The automatic-search method is combined with Monte Carlo simulations, which makes use of a given dynamical rule for the time evolution of the system. In the problems inves¬tigated, the Metropolis and Glauber dynamics produced essentially equivalent results. We present a brief introduction to critical phenomena and phase transitions. We describe the automatic-search method and discuss some previous works, where the method has been applied successfully. We apply the method for the ferromagnetic fsing model, computing the critical fron¬tiers and the magnetization exponent (3 for several geometric lattices. We also apply the method for the site-diluted ferromagnetic Ising model on a square lattice, computing its critical frontier, as well as the magnetization exponent f3 and the susceptibility exponent 7. We verify that the universality class of the system remains unchanged when the site dilution is introduced. We study the problem of long-range bond percolation in a diluted linear chain and discuss the non-extensivity questions inherent to long-range-interaction systems. Finally we present our conclusions and possible extensions of this work
Resumo:
This work presents a new model for the Heterogeneous p-median Problem (HPM), proposed to recover the hidden category structures present in the data provided by a sorting task procedure, a popular approach to understand heterogeneous individual’s perception of products and brands. This new model is named as the Penalty-free Heterogeneous p-median Problem (PFHPM), a single-objective version of the original problem, the HPM. The main parameter in the HPM is also eliminated, the penalty factor. It is responsible for the weighting of the objective function terms. The adjusting of this parameter controls the way that the model recovers the hidden category structures present in data, and depends on a broad knowledge of the problem. Additionally, two complementary formulations for the PFHPM are shown, both mixed integer linear programming problems. From these additional formulations lower-bounds were obtained for the PFHPM. These values were used to validate a specialized Variable Neighborhood Search (VNS) algorithm, proposed to solve the PFHPM. This algorithm provided good quality solutions for the PFHPM, solving artificial generated instances from a Monte Carlo Simulation and real data instances, even with limited computational resources. Statistical analyses presented in this work suggest that the new algorithm and model, the PFHPM, can recover more accurately the original category structures related to heterogeneous individual’s perceptions than the original model and algorithm, the HPM. Finally, an illustrative application of the PFHPM is presented, as well as some insights about some new possibilities for it, extending the new model to fuzzy environments
Resumo:
In the last decades the study of integer-valued time series has gained notoriety due to its broad applicability (modeling the number of car accidents in a given highway, or the number of people infected by a virus are two examples). One of the main interests of this area of study is to make forecasts, and for this reason it is very important to propose methods to make such forecasts, which consist of nonnegative integer values, due to the discrete nature of the data. In this work, we focus on the study and proposal of forecasts one, two and h steps ahead for integer-valued second-order autoregressive conditional heteroskedasticity processes [INARCH (2)], and in determining some theoretical properties of this model, such as the ordinary moments of its marginal distribution and the asymptotic distribution of its conditional least squares estimators. In addition, we study, via Monte Carlo simulation, the behavior of the estimators for the parameters of INARCH(2) processes obtained using three di erent methods (Yule- Walker, conditional least squares, and conditional maximum likelihood), in terms of mean squared error, mean absolute error and bias. We present some forecast proposals for INARCH(2) processes, which are compared again via Monte Carlo simulation. As an application of this proposed theory, we model a dataset related to the number of live male births of mothers living at Riachuelo city, in the state of Rio Grande do Norte, Brazil.
Resumo:
In the last decades the study of integer-valued time series has gained notoriety due to its broad applicability (modeling the number of car accidents in a given highway, or the number of people infected by a virus are two examples). One of the main interests of this area of study is to make forecasts, and for this reason it is very important to propose methods to make such forecasts, which consist of nonnegative integer values, due to the discrete nature of the data. In this work, we focus on the study and proposal of forecasts one, two and h steps ahead for integer-valued second-order autoregressive conditional heteroskedasticity processes [INARCH (2)], and in determining some theoretical properties of this model, such as the ordinary moments of its marginal distribution and the asymptotic distribution of its conditional least squares estimators. In addition, we study, via Monte Carlo simulation, the behavior of the estimators for the parameters of INARCH(2) processes obtained using three di erent methods (Yule- Walker, conditional least squares, and conditional maximum likelihood), in terms of mean squared error, mean absolute error and bias. We present some forecast proposals for INARCH(2) processes, which are compared again via Monte Carlo simulation. As an application of this proposed theory, we model a dataset related to the number of live male births of mothers living at Riachuelo city, in the state of Rio Grande do Norte, Brazil.
Resumo:
Existem vários métodos de simulação para calcular as propriedades críticas de sistemas; neste trabalho utilizamos a dinâmica de tempos curtos, com o intuito de testar a eficiência desta técnica aplicando-a ao modelo de Ising com diluição de sítios. A Dinâmica de tempos curtos em combinação com o método de Monte Carlos verificou que mesmo longe do equilíbrio termodinâmico o sistema já se mostra insensível aos detalhes microscópicos das interações locais e portanto, o seu comportamento universal pode ser estudado ainda no regime de não-equilíbrio, evitando-se o problema do alentecimento crítico ( critical slowing down ) a que sistema em equilíbrio fica submetido quando está na temperatura crítica. O trabalho de Huse e Janssen mostrou um comportamento universal e uma lei de escala nos sistemas críticos fora do equilíbrio e identificou a existência de um novo expoente crítico dinâmico θ, associado ao comportamento anômalo da magnetização. Fazemos uima breve revisão das transições de fase e fenômeno críticos. Descrevemos o modelo de Ising, a técnica de Monte Carlo e por final, a dinâmica de tempos curtos. Aplicamos a dinâmica de tempos curtos para o modelo de Insing ferromagnéticos em uma rede quadrada com diluição de sítios. Calculamos o expoente dinâmicos θ e z, onde verificamos que existe quebra de classe de universilidade com relação às diferentes concentrações de sítios (p=0.70,0.75,0.80,0.85,0.90,0.95,1.00). calculamos também os expoentes estáticos β e v, onde encontramos pequenas variações com a desordem. Finalmente, apresentamos nossas conclusões e possíveis extensões deste trabalho
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
Neste trabalho investigamos aspectos da propagação de danos em sistemas cooperativos, descritos por modelos de variáveis discretas (spins), mutuamente interagentes, distribuídas nos sítios de uma rede regular. Os seguintes casos foram examinados: (i) A influência do tipo de atualização (paralela ou sequencial) das configurações microscópicas, durante o processo de simulação computacional de Monte Carlo, no modelo de Ising em uma rede triangular. Observamos que a atualização sequencial produz uma transição de fase dinâmica (Caótica- Congelada) a uma temperatura TD ≈TC (Temperatura de Curie), para acoplamentos ferromagnéticos (TC=3.6409J/Kb) e antiferromagnéticos (TC=0). A atualização paralela, que neste caso é incapaz de diferenciar os dois tipos de acoplamentos, leva a uma transição em TD ≠TC; (ii) Um estudo do modelo de Ising na rede quadrada, com diluição temperada de sítios, mostrou que a técnica de propagação de danos é um eficiente método para o cálculo da fronteira crítica e da dimensão fractal do aglomerado percolante, já que os resultados obtidos (apesar de um esforço computacional relativamente modesto), são comparáveis àqueles resultantes da aplicação de outros métodos analíticos e/ou computacionais de alto empenho; (iii) Finalmente, apresentamos resultados analíticos que mostram como certas combinações especiais de danos podem ser utilizadas para o cálculo de grandezas termodinâmicas (parâmetros de ordem, funções de correlação e susceptibilidades) do modelo Nα x Nβ, o qual contém como casos particulares alguns dos modelos mais estudados em Mecânica Estatística (Ising, Potts, Ashkin Teller e Cúbico)
Resumo:
The diffusive epidemic process (PED) is a nonequilibrium stochastic model which, exhibits a phase trnasition to an absorbing state. In the model, healthy (A) and sick (B) individuals diffuse on a lattice with diffusion constants DA and DB, respectively. According to a Wilson renormalization calculation, the system presents a first-order phase transition, for the case DA > DB. Several researches performed simulation works for test this is conjecture, but it was not possible to observe this first-order phase transition. The explanation given was that we needed to perform simulation to higher dimensions. In this work had the motivation to investigate the critical behavior of a diffusive epidemic propagation with Lévy interaction(PEDL), in one-dimension. The Lévy distribution has the interaction of diffusion of all sizes taking the one-dimensional system for a higher-dimensional. We try to explain this is controversy that remains unresolved, for the case DA > DB. For this work, we use the Monte Carlo Method with resuscitation. This is method is to add a sick individual in the system when the order parameter (sick density) go to zero. We apply a finite size scalling for estimates the critical point and the exponent critical =, e z, for the case DA > DB