5 resultados para Simplified Navier-Stokes Equation

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study provides a methodology that gives a predictive character the computer simulations based on detailed models of the geometry of a porous medium. We using the software FLUENT to investigate the flow of a viscous Newtonian fluid through a random fractal medium which simplifies a two-dimensional disordered porous medium representing a petroleum reservoir. This fractal model is formed by obstacles of various sizes, whose size distribution function follows a power law where exponent is defined as the fractal dimension of fractionation Dff of the model characterizing the process of fragmentation these obstacles. They are randomly disposed in a rectangular channel. The modeling process incorporates modern concepts, scaling laws, to analyze the influence of heterogeneity found in the fields of the porosity and of the permeability in such a way as to characterize the medium in terms of their fractal properties. This procedure allows numerically analyze the measurements of permeability k and the drag coefficient Cd proposed relationships, like power law, for these properties on various modeling schemes. The purpose of this research is to study the variability provided by these heterogeneities where the velocity field and other details of viscous fluid dynamics are obtained by solving numerically the continuity and Navier-Stokes equations at pore level and observe how the fractal dimension of fractionation of the model can affect their hydrodynamic properties. This study were considered two classes of models, models with constant porosity, MPC, and models with varying porosity, MPV. The results have allowed us to find numerical relationship between the permeability, drag coefficient and the fractal dimension of fractionation of the medium. Based on these numerical results we have proposed scaling relations and algebraic expressions involving the relevant parameters of the phenomenon. In this study analytical equations were determined for Dff depending on the geometrical parameters of the models. We also found a relation between the permeability and the drag coefficient which is inversely proportional to one another. As for the difference in behavior it is most striking in the classes of models MPV. That is, the fact that the porosity vary in these models is an additional factor that plays a significant role in flow analysis. Finally, the results proved satisfactory and consistent, which demonstrates the effectiveness of the referred methodology for all applications analyzed in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we have investigated some aspects of the two-dimensional flow of a viscous Newtonian fluid through a disordered porous medium modeled by a random fractal system similar to the Sierpinski carpet. This fractal is formed by obstacles of various sizes, whose distribution function follows a power law. They are randomly disposed in a rectangular channel. The velocity field and other details of fluid dynamics are obtained by solving numerically of the Navier-Stokes and continuity equations at the pore level, where occurs actually the flow of fluids in porous media. The results of numerical simulations allowed us to analyze the distribution of shear stresses developed in the solid-fluid interfaces, and find algebraic relations between the viscous forces or of friction with the geometric parameters of the model, including its fractal dimension. Based on the numerical results, we proposed scaling relations involving the relevant parameters of the phenomenon, allowing quantifying the fractions of these forces with respect to size classes of obstacles. Finally, it was also possible to make inferences about the fluctuations in the form of the distribution of viscous stresses developed on the surface of obstacles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study provides a methodology that gives a predictive character the computer simulations based on detailed models of the geometry of a porous medium. We using the software FLUENT to investigate the flow of a viscous Newtonian fluid through a random fractal medium which simplifies a two-dimensional disordered porous medium representing a petroleum reservoir. This fractal model is formed by obstacles of various sizes, whose size distribution function follows a power law where exponent is defined as the fractal dimension of fractionation Dff of the model characterizing the process of fragmentation these obstacles. They are randomly disposed in a rectangular channel. The modeling process incorporates modern concepts, scaling laws, to analyze the influence of heterogeneity found in the fields of the porosity and of the permeability in such a way as to characterize the medium in terms of their fractal properties. This procedure allows numerically analyze the measurements of permeability k and the drag coefficient Cd proposed relationships, like power law, for these properties on various modeling schemes. The purpose of this research is to study the variability provided by these heterogeneities where the velocity field and other details of viscous fluid dynamics are obtained by solving numerically the continuity and Navier-Stokes equations at pore level and observe how the fractal dimension of fractionation of the model can affect their hydrodynamic properties. This study were considered two classes of models, models with constant porosity, MPC, and models with varying porosity, MPV. The results have allowed us to find numerical relationship between the permeability, drag coefficient and the fractal dimension of fractionation of the medium. Based on these numerical results we have proposed scaling relations and algebraic expressions involving the relevant parameters of the phenomenon. In this study analytical equations were determined for Dff depending on the geometrical parameters of the models. We also found a relation between the permeability and the drag coefficient which is inversely proportional to one another. As for the difference in behavior it is most striking in the classes of models MPV. That is, the fact that the porosity vary in these models is an additional factor that plays a significant role in flow analysis. Finally, the results proved satisfactory and consistent, which demonstrates the effectiveness of the referred methodology for all applications analyzed in this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes a formulation for optimization of 2D-structure layouts submitted to mechanic and thermal shipments and applied an h-adaptive filter process which conduced to computational low spend and high definition structural layouts. The main goal of the formulation is to minimize the structure mass submitted to an effective state of stress of von Mises, with stability and lateral restriction variants. A criterion of global measurement was used for intents a parametric condition of stress fields. To avoid singularity problems was considerate a release on the stress restriction. On the optimization was used a material approach where the homogenized constructive equation was function of the material relative density. The intermediary density effective properties were represented for a SIMP-type artificial model. The problem was simplified by use of the method of finite elements of Galerkin using triangles with linear Lagrangian basis. On the solution of the optimization problem, was applied the augmented Lagrangian Method, that consists on minimum problem sequence solution with box-type restrictions, resolved by a 2nd orderprojection method which uses the method of the quasi-Newton without memory, during the problem process solution. This process reduces computational expends showing be more effective and solid. The results materialize more refined layouts with accurate topologic and shape of structure definitions. On the other hand formulation of mass minimization with global stress criterion provides to modeling ready structural layouts, with violation of the criterion of homogeneous distributed stress

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steam assisted gravity drainage process (SAGD) involves two parallel horizontal wells located in a same vertical plane, where the top well is used as steam injector and the bottom well as producer. The dominant force in this process is gravitational. This improved oil recovery method has been demonstrated to be economically viable in commercial projects of oil recovery for heavy and extra heavy oil, but it is not yet implemented in Brazil. The study of this technology in reservoirs with characteristics of regional basins is necessary in order to analyze if this process can be used, minimizing the steam rate demand and improving the process profitability. In this study, a homogeneous reservoir was modeled with characteristics of Brazilian Northeast reservoirs. Simulations were accomplished with STARS , a commercial software from Computer Modelling Group, which is used to simulate improved oil recovery process in oil reservoirs. In this work, a steam optimization was accomplished in reservoirs with different physical characteristics and in different cases, through a technical-economic analysis. It was also studied a semi-continuous steam injection or with injection stops. Results showed that it is possible to use a simplified equation of the net present value, which incorporates earnings and expenses on oil production and expenses in steam requirement, in order to optimize steam rate and obtaining a higher net present value in the process. It was observed that SAGD process can be or not profitable depending on reservoirs characteristics. It was also obtained that steam demand can still be reduced injecting in a non continuous form, alternating steam injection with stops at several time intervals. The optimization of these intervals allowed to minimize heat losses and to improve oil recovery