2 resultados para RIBOSOMAL-RNA
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
In this dissertation, the theoretical principles governing the molecular modeling were applied for electronic characterization of oligopeptide α3 and its variants (5Q, 7Q)-α3, as well as in the quantum description of the interaction of the aminoglycoside hygromycin B and the 30S subunit of bacterial ribosome. In the first study, the linear and neutral dipeptides which make up the mentioned oligopeptides were modeled and then optimized for a structure of lower potential energy and appropriate dihedral angles. In this case, three subsequent geometric optimization processes, based on classical Newtonian theory, the semi-empirical and density functional theory (DFT), explore the energy landscape of each dipeptide during the search of ideal minimum energy structures. Finally, great conformers were described about its electrostatic potential, ionization energy (amino acids), and frontier molecular orbitals and hopping term. From the hopping terms described in this study, it was possible in subsequent studies to characterize the charge transport propertie of these peptides models. It envisioned a new biosensor technology capable of diagnosing amyloid diseases, related to an accumulation of misshapen proteins, based on the conductivity displayed by proteins of the patient. In a second step of this dissertation, a study carried out by quantum molecular modeling of the interaction energy of an antibiotic ribosomal aminoglicosídico on your receiver. It is known that the hygromycin B (hygB) is an aminoglycoside antibiotic that affects ribosomal translocation by direct interaction with the small subunit of the bacterial ribosome (30S), specifically with nucleotides in helix 44 of the 16S ribosomal RNA (16S rRNA). Due to strong electrostatic character of this connection, it was proposed an energetic investigation of the binding mechanism of this complex using different values of dielectric constants (ε = 0, 4, 10, 20 and 40), which have been widely used to study the electrostatic properties of biomolecules. For this, increasing radii centered on the hygB centroid were measured from the 30S-hygB crystal structure (1HNZ.pdb), and only the individual interaction energy of each enclosed nucleotide was determined for quantum calculations using molecular fractionation with conjugate caps (MFCC) strategy. It was noticed that the dielectric constants underestimated the energies of individual interactions, allowing the convergence state is achieved quickly. But only for ε = 40, the total binding energy of drug-receptor interaction is stabilized at r = 18A, which provided an appropriate binding pocket because it encompassed the main residues that interact more strongly with the hygB - C1403, C1404, G1405, A1493, G1494, U1495, U1498 and C1496. Thus, the dielectric constant ≈ 40 is ideal for the treatment of systems with many electrical charges. By comparing the individual binding energies of 16S rRNA nucleotides with the experimental tests that determine the minimum inhibitory concentration (MIC) of hygB, it is believed that those residues with high binding values generated bacterial resistance to the drug when mutated. With the same reasoning, since those with low interaction energy do not influence effectively the affinity of the hygB in its binding site, there is no loss of effectiveness if they were replaced.
Resumo:
The phylogeny is one of the main activities of the modern taxonomists and a way to reconstruct the history of the life through comparative analysis of these sequences stored in their genomes aimed find any justification for the origin or evolution of them. Among the sequences with a high level of conservation are the genes of repair because it is important for the conservation and maintenance of genetic stability. Hence, variations in repair genes, as the genes of the nucleotide excision repair (NER), may indicate a possible gene transfer between species. This study aimed to examine the evolutionary history of the components of the NER. For this, sequences of UVRA, UVRB, UVRC and XPB were obtained from GenBank by Blast-p, considering 10-15 as cutoff to create a database. Phylogenetic studies were done using algorithms in PAUP programs, BAYES and PHYLIP package. Phylogenetic trees were build with protein sequences and with sequences of 16S ribosomal RNA for comparative analysis by the methods of parsimony, likelihood and Bayesian. The XPB tree shows that archaeal´s XPB helicases are similar to eukaryotic helicases. According to this data, we infer that the eukaryote nucleotide excision repair system had appeared in Archaea. At UVRA, UVRB and UVRC trees was found a monophyletic group formed by three species of epsilonproteobacterias class, three species of mollicutes class and archaeabacterias of Methanobacteria and Methanococci classes. This information is supported by a tree obtained with the proteins, UVRA, UVRB and UVRC concatenated. Thus, although there are arguments in the literature defending the horizontal transfer of the system uvrABC of bacteria to archaeabacterias, the analysis made in this study suggests that occurred a vertical transfer, from archaeabacteria, of both the NER genes: uvrABC and XPs. According the parsimony, this is the best way because of the occurrence of monophyletic groups, the time of divergence of classes and number of archaeabacterias species with uvrABC system