18 resultados para REAGENT

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the chemical method of synthesis of co-precipitation were produced ferrite powders manganese-cobalt equal stoichiometric formula Mn (1-x) Co (x) Fe2O4, for 0 < x < 1, first reagent element using as the hydroxide ammonium and second time using sodium hydroxide. The obtained powders were calcined at 400 ° C, 650 ° C, 900 ° C and 1150 ° C in a conventional oven type furnace with an air atmosphere for a period of 240 minutes. Other samples were calcined at a temperature of 900 ° C in a controlled atmosphere of argon, to evaluate the possible influence of the atmosphere on the final results the structure and morphology. The samples were also calcined in a microwave oven at 400 ° C and 650 ° C for a period of 45 minutes possible to evaluate the performance of this type of heat treatment furnace. It was successfully tested the ability of this group include isomorphic ferrite with the inclusion of nickel cations in order to evaluate the occurrence of disorder in the crystalline structures and their changes in magnetic characteristics.To identify the structural, morphological, chemical composition and proportions, as well as their magnetic characteristics were performed characterization tests of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDX), thermogravimetric (TG), vibrating sample magnetometry (MAV) and Mössbauer spectroscopy. These tests revealed the occurrence of distortion in the crystal lattice, changes in magnetic response, occurrence of nanosized particles and superparamagnetism

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The production of water has become one of the most important wastes in the petroleum industry, specifically in the up stream segment. The treatment of this kind of effluents is complex and normally requires high costs. In this context, the electrochemical treatment emerges as an alternative methodology for treating the wastewaters. It employs electrochemical reactions to increase the capability and efficiency of the traditional chemical treatments for associated produced water. The use of electrochemical reactors can be effective with small changes in traditional treatments, generally not representing a significant additional surface area for new equipments (due to the high cost of square meter on offshore platforms) and also it can use almost the same equipments, in continuous or batch flow, without others high costs investments. Electrochemical treatment causes low environmental impact, because the process uses electrons as reagent and generates small amount of wastes. In this work, it was studied two types of electrochemical reactors: eletroflocculation and eletroflotation, with the aim of removing of Cu2+, Zn2+, phenol and BTEX mixture of produced water. In eletroflocculation, an electrical potential was applied to an aqueous solution containing NaCl. For this, it was used iron electrodes, which promote the dissolution of metal ions, generating Fe2+ and gases which, in appropriate pH, promote also clotting-flocculation reactions, removing Cu2+ and Zn2+. In eletroflotation, a carbon steel cathode and a DSA type anode (Ti/TiO2-RuO2-SnO2) were used in a NaCl solution. It was applied an electrical current, producing strong oxidant agents as Cl2 and HOCl, increasing the degradation rate of BTEX and phenol. Under different flow rates, the Zn2+ was removed by electrodeposition or by ZnOH formation, due the increasing of pH during the reaction. To better understand the electrochemical process, a statistical protocol factor (22) with central point was conducted to analyze the sensitivity of operating parameters on removing Zn2+ by eletroflotation, confirming that the current density affected the process negatively and the flow rate positively. For economical viability of these two electrochemical treatments, the energy consumption was calculated, taking in account the kWh given by ANEEL. The treatment cost obtained were quite attractive in comparison with the current treatments used in Rio Grande do Norte state. In addition, it could still be reduced for the case of using other alternative energy source such as solar, wind or gas generated directly from the Petrochemical Plant or offshore platforms

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The antioxidant activity of aqueous extracts of five edible tropical fruits (Spondias lutea, Hancornia speciosa, Spondias purpurea, Manilkara zapota and Averrhoa carambola) was investigated using different methods. The amount of phenolic compounds was determined by the Folin-Ciocalteu reagent. The M. zapota had Total Antioxidant Capacity (TAC) higher than the other fruits. Extracts showed neither reducing power nor iron chelation (between 0.01 and 2.0 mg/mL). H. speciosa exhibited the highest superoxide scavenging activity (80%, 0.5 mg/mL). However, at high concentrations (8.0 mg/mL) only A. carambola, S. purpurea and S. lutea scavenging 100% of radicals formed. M. zapota and S. purpurea had higher phenolic compound levels and greater OH radical scavenging activity (92 %, 2.0 mg/mL). Antiproliferative activity was assessed with 3T3 fibroblasts and cervical tumor cells (HeLa). The most potent extract was S. purpurea (0.5 mg/mL), which inhibited HeLa cell proliferation by 52%. The most fruits showed antioxidant and antiproliferative properties, characterizing them as functional foods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural gas, although basically composed by light hydrocarbons, also presents in its composition gaseous contaminants such as CO2 (carbon dioxide) and H2S (hydrogen sulfide). Hydrogen sulfide, which commonly occurs in oil and gas exploration and production activities, besides being among the gases that are responsible by the acid rain and greenhouse effect, can also cause serious harm to health, leading even to death, and damages to oil and natural gas pipelines. Therefore, the removal of hydrogen sulfide will significantly reduce operational costs and will result in oil with best quality to be sent to refinery, thereby resulting in economical, environmental, and social benefits. These factors highlight the need for the development and improvement of hydrogen sulfide sequestrating agents to be used in the oil industry. Nowadays there are several procedures for hydrogen sulfide removal from natural gas used by the petroleum industry. However, they produce derivatives of amines that are harmful to the distillation towers, form insoluble precipitates that cause pipe clogging and produce wastes of high environmental impact. Therefore, the obtaining of a stable system, in inorganic or organic reaction media, that is able to remove hydrogen sulfide without forming by-products that affect the quality and costs of natural gas processing, transport and distribution is of great importance. In this context, the evaluation of the kinetics of H2S removal is a valuable procedure for the treatment of natural gas and disposal of the byproducts generated by the process. This evaluation was made in an absorption column packed with Raschig ring, where natural gas with H2S passes through a stagnant solution, being the contaminant absorbed by it. The content of H2S in natural gas in column output was monitored by an H2S analyzer. The comparison between the obtained curves and the study of the involved reactions have not only allowed to determine the efficiency and mass transfer controlling step of the involved processes but also make possible to effect a more detailed kinetic study and evaluate the commercial potential of each reagent

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The generation of wastes in most industrial process is inevitable. In the petroleum industry, one of the greatest problems for the environment is the huge amount of produced water generated in the oil fields. This wastewater is a complex mixture and present great amounts. These effluents can be hazardous to the environmental without adequate treatment. This research is focused in the analysis of the efficiencies of the flotation and photo-oxidation processes to remove and decompose the organic compounds present in the produced water. A series of surfactants derivated from the laurilic alcohol was utilized in the flotation to promote the separation. The experiments have been performed with a synthetic wastewater, carefully prepared with xylene. The experimental data obtained using flotation presented a first order kinetic, identified by the quality of the linear data fitting. The best conditions were found at 0.029 g.L-1 for the surfactant EO 7, 0.05 g.L-1 for EO 8, 0.07 g.L-1 for EO 9, 0.045 g.L-1 for EO 10 and 0.08 g.L-1 for EO 23 with the following estimated kinetic constants: 0.1765, 0.1325, 0.1210, 0.1531 and 0.1699 min-1, respectively. For the series studied, the most suitable surfactant was the EO 7 due to the lower reagent onsumption, higher separation rate constant and higher removal efficiency of xylene in the aqueous phase (98%). Similarly to the flotation, the photo-Fenton process shows to be efficient for degradation of xylene and promoting the mineralization of the organic charge around 90% and 100% in 90 min

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amorphous silica-alumina and modified by incipient impregnation of iron, nickel, zinc and chromium were synthetized in oxide and metal state and evaluated as catalysts for the chloromethane conversion reaction. With known techniques their textural properties were determined and dynamics techniques in programmed temperature were used to find the acid properties of the materials. A thermodynamic model was used to determine the adsorption and desorption capacity of chloromethane. Two types of reactions were studied. Firstly the chloromethane was catalytically converted to hydrocarbons (T = 300 450 oC e m = 300 mg) in a fixed bed reactor with controlled pressure and flow. Secondly the deactivation of the unmodified support was studied (at 300 °C and m=250 g) in a micro-adsorver provided of gravimetric monitoring. The metal content (2,5%) and the chloromethane percent of the reagent mixture (10% chloromethane in nitrogen) were fixed for all the tests. From the results the chloromethane conversion and selectivity of the gaseous products (H2, CH4, C3 and C4) were determined as well as the energy of desorption (75,2 KJ/mol for Ni/Al2O3-SiO2 to 684 KJ/mol for the Zn/Al2O3-SiO2 catalyst) considering the desorption rate as a temperature function. The presence of a metal on the support showed to have an important significance in the chloromethane condensation. The oxide class catalyst presented a better performance toward the production of hydrocarbons. Especial mention to the ZnO/Al2O3-SiO2 that, in a gas phase basis, produced C3 83 % max. and C4 63% max., respectively, in the temperature of 450 oC and 20 hours on stream. Hydrogen was produced exclusively in the FeO/Al2O3-SiO2 catalysts (15 % max., T = 550 oC and 5,6 h on stream) and Ni/SiO2-Al2O3 (75 % max., T = 400 oC and 21,6 h on stream). All the catalysts produced methane (10 à 92 %), except for Ni/Al2O3-SiO2 and CrO/Al2O3-SiO2. In the deactivation study two models were proposed: The parallel model, where the product production competes with coke formation; and the sequential model, where the coke formation competes with the product desorption dessorption step. With the mass balance equations and the mechanism proposed six parameters were determined. Two kinetic parameters: the hydrocarbon formation constant, 8,46 10-4 min-1, the coke formation, 1,46 10-1 min-1; three thermodynamic constants (the global, 0,003, the chloromethane adsorption 0,417 bar-1, the hydrocarbon adsorption 2,266 bar-1), and the activity exponent of the coke formation (1,516). The model was reasonable well fitted and presented a satisfactory behavior in relation with the proposed mechanism

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The generation of wastes in most industrial process is inevitable. In the petroleum industry, one of the greatest problems for the environment is the huge amount of produced water generated in the oil fields. This wastewater is a complex mixture and present great amounts. These effluents can be hazardous to the environmental without adequate treatment. This research is focused in the analysis of the efficiencies of the flotation and photo-oxidation processes to remove and decompose the organic compounds present in the produced water. A series of surfactants derivated from the laurilic alcohol was utilized in the flotation to promote the separation. The experiments have been performed with a synthetic wastewater, carefully prepared with xylene. The experimental data obtained using flotation presented a first order kinetic, identified by the quality of the linear data fitting. The best conditions were found at 0.029 g.L-1 for the surfactant EO 7, 0.05 g.L-1 for EO 8, 0.07 g.L-1 for EO 9, 0.045 g.L-1 for EO 10 and 0.08 g.L-1 for EO 23 with the following estimated kinetic constants: 0.1765, 0.1325, 0.1210, 0.1531 and 0.1699 min-1, respectively. For the series studied, the most suitablesurfactant was the EO 7 due to the lower reagent consumption, higher separation rate constant and higher removal efficiency of xylene in the aqueous phase (98%). Similarly to the flotation, the photo-Fenton process shows to be efficient for degradation of xylene and promoting the mineralization of the organic charge around 90% and 100% in 90 min

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arbuscular mycorrhizal fungi (AMF) are obligatory symbiotic organisms that associate with roots of a large number of plant taxa, and are found in all terrestrial ecosystems. These fungi promote greater tolerance to environmental stresses to associated plant, favoring the establishment of plant communities, especially where soil fertility is a limiting factor, as in the Caatinga, an exclusively Brazilian domain that has been focus of research due to its great biodiversity that can help clarify the history of vegetation in South America. Because of the ecological importance of AMF, the limited number of jobs and the potential diversity of the Caatinga, this work aims to inventory the diversity and determine AMF communities in areas with different faces occurrent in FLONA Araripe, Ceará (CE). The sample collection occurred in four periods at the beginning and end of the dry season (August and December 2011, respectively) and rainy (February and June 2012, respectively) in an area of marsh and woodland altitude of the Araripe, Crato, CE. The glomerosporos were extracted by wet sieving and centrifugation in water and sucrose (50%) mounted between slide and coverslip using PVLG and PVLG + Reagent Melzer. In total, we found 46 species of AMF distributed in eight families and 16 genera: Acaulospora (6), Ambispora (1), Cetraspora (2), Dentiscutata (5), Fuscutata (2), Gigaspora (6), Glomus (13) Intraornatospora (1), Kuklospora (1), Orbispora (1), Paradentiscutata (1), Quatunica (1), Racocetra (1), Scutellospora (2), Septoglomus (2) and a new genus. analysis showed that ecological each area of study has its own seasonal dynamics, with an area of woodland with a greater diversity of species throughout the year, while the marsh elevation showed greater variation in species found among the collection periods, showing that vegetation and rainfall has strong influence on the seasonal dynamics of AMF, as well as the availability of nutrients and soil pH so

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fucans, sulfated polysaccharides extracted from brown algae and some echinoderms, have been extensively studied for its diverse biological activities and because of its interference with molecular mechanisms of cell to cell recognition, including leukocyte trafficking from blood vessels into sites of inflammation mediated by selectin, a family of adhesion molecules. In the present study, we examined structural features of a heterofucan extracted from brown algae Padina gymnospora and its effect on the leukocyte migration to the peritoneum. The sulfated polysaccharides were extracted from the brown seaweed by proteolysis with the proteolytic enzyme maxatase. The presence of protein and uronic acid contamination was detected in the crude polysaccharide extract. Fractionation of the crude extract with growing concentrations of acetone produced five fractions with different concentrations of fucose, xylose, uronic acid, galactose, glucose and sulfate. The fraction precipitated with 1.5 volumes of acetone was characterized by infrared and nuclear magnetic resonance, through which can be observed the presence of sulfate groups in the C4 of -L-fucose. The anti-inflammatory action of this composite was assessed by a sodium thioglycollate-induced peritonitis assay and through nitric oxide production by the peritoneal macrophages using Griess reagent. Fraction F1.5 was efficient in reducing leukocyte influx into the peritoneal cavity when 10 mg/kg and 25mg/kg were used, resulting in a decrease of 56 and 39%, respectively. A decrease of nitric oxide production occurred when high concentrations of fucana were used. The cytotoxicity of the composite was also assessed using the reduction of 3-(4,5 dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT). Fraction F1.5 had no cytotoxicity when 500 μg/mL of the fraction was used. This study suggests the use of fraction F1.5 (heterofucan) as an anti-inflammatory

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis focuses on the coprecipitation synthesis method for preparation of ceramic materials with perovskite structure, their characterization and application as catalytic material in the reaction of converting CO to CO2 developing a methodological alternative route of synthesis from the middle via oxalate coprecipitation material SrCo0,8Fe0,2O3-d. In order to check the influence of this method, it was also synthesized using a combined citrate - EDTA complexing method. The material was characterized by: X-ray diffraction (XRD), Rietveld refinement method, thermogravimetry and differential thermo analysis (TG / DTA), scanning (SEM) and transmission (TEM) electron microscopy, particle size distribution and surface analysis method BET. Both methods led to post-phase synthesis, with pH as a relevant parameter. The synthesis based on the method via oxalate coprecipitation among particles led to the crystalline phase as those obtained using a combined citrate - EDTA complexing method under the same conditions of heat treatment. The nature of the reagent used via oxalate coprecipitation method produced a material with approximately 80 % lower than the average size of crystallites. Moreover, the via oxalate coprecipitation method precursors obtained in the solid state at low temperature (~ 26 oC), shorter synthesis, greater thermal stability and a higher yield of around 90-95 %, maintaining the same order of magnitude the crystallite size that the combined citrate - EDTA complexing method. For purposes of comparing the catalytic properties of the material was also synthesized by the using a combined citrate - EDTA complexing method. The evaluation of catalytic materials SrCo0,8Fe0,2O3-d LaNi0,3Co0,7O3-d was accompanied on the oxidation of CO to CO2 using a stainless steel tubular reactor in the temperature range of 75-300 oC. The conversion CO gas was evaluated in both materials on the results shaved that the firm conversion was loves for the material LaNi0,3Co0,7O3-d

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The diatomite is a natural material that has numerous applications due to changes in their physical and chemical properties after processing. It is currently used in the industry as a sound insulator , filter aid and industrial load . The filter material shall be inert chemical composition , which will diatomite confers a high commercial value and performance not found in other particulate materials , for this application. The diatomite surface undergoes changes after thermal treatment at high temperatures , from 800ºC , with properties that enable its application in the food , beverage , pharmaceutical , cosmetic and textiles . In this work , we developed a study on thermal treatment on natural diatomite to adapt their properties to the application as a filter aid . The heat treatments were performed in an open oven at temperatures of 800ºC , 1000ºC and 1200ºC for a time of 24 hours. Reagents were added in the constitution of the samples analyzed. The reagents used were sodium carbonate (Na2CO3 ) and sodium chloride (NaCl) . The samples were characterized by x - ray diffraction , x -ray fluorescence , scanning electron microscopy , analysis and particle size distribution , specific surface area by the BET method , and pore volume by BJH method. The results showed a reduction in porosity of the material as well as a significant increase in specific surface area after heat treatment and the reactants in the ratio of 3 wt%. The diatomaceous earth , after heat treatment , undergone changes in its coloration , varying in white, cream and beige , which directly interferes with the speed of filtration materials process. All results obtained before and after heat treatment of the material with the values obtained for samples already used industrially , Brazilian and American industry , which were characterized using the same test methods performed with the samples in the study were compared and showed promising efficiency when material studied in the region of Punaú - RN , after processing , reagent addition and heat treatment, as an element in the composition of filter .

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The modern industrial progress has been contaminating water with phenolic compounds. These are toxic and carcinogenic substances and it is essential to reduce its concentration in water to a tolerable one, determined by CONAMA, in order to protect the living organisms. In this context, this work focuses on the treatment and characterization of catalysts derived from the bio-coal, by-product of biomass pyrolysis (avelós and wood dust) as well as its evaluation in the phenol photocatalytic degradation reaction. Assays were carried out in a slurry bed reactor, which enables instantaneous measurements of temperature, pH and dissolved oxygen. The experiments were performed in the following operating conditions: temperature of 50 °C, oxygen flow equals to 410 mL min-1 , volume of reagent solution equals to 3.2 L, 400 W UV lamp, at 1 atm pressure, with a 2 hours run. The parameters evaluated were the pH (3.0, 6.9 and 10.7), initial concentration of commercial phenol (250, 500 and 1000 ppm), catalyst concentration (0, 1, 2, and 3 g L-1 ), nature of the catalyst (activated avelós carbon washed with dichloromethane, CAADCM, and CMADCM, activated dust wood carbon washed with dichloromethane). The results of XRF, XRD and BET confirmed the presence of iron and potassium in satisfactory amounts to the CAADCM catalyst and on a reduced amount to CMADCM catalyst, and also the surface area increase of the materials after a chemical and physical activation. The phenol degradation curves indicate that pH has a significant effect on the phenol conversion, showing better results for lowers pH. The optimum concentration of catalyst is observed equals to 1 g L-1 , and the increase of the initial phenol concentration exerts a negative influence in the reaction execution. It was also observed positive effect of the presence of iron and potassium in the catalyst structure: betters conversions were observed for tests conducted with the catalyst CAADCM compared to CMADCM catalyst under the same conditions. The higher conversion was achieved for the test carried out at acid pH (3.0) with an initial concentration of phenol at 250 ppm catalyst in the presence of CAADCM at 1 g L-1 . The liquid samples taken every 15 minutes were analyzed by liquid chromatography identifying and quantifying hydroquinone, p-benzoquinone, catechol and maleic acid. Finally, a reaction mechanism is proposed, cogitating the phenol is transformed into the homogeneous phase and the others react on the catalyst surface. Applying the model of Langmuir-Hinshelwood along with a mass balance it was obtained a system of differential equations that were solved using the Runge-Kutta 4th order method associated with a optimization routine called SWARM (particle swarm) aiming to minimize the least square objective function for obtaining the kinetic and adsorption parameters. Related to the kinetic rate constant, it was obtained a magnitude of 10-3 for the phenol degradation, 10-4 to 10-2 for forming the acids, 10-6 to 10-9 for the mineralization of quinones (hydroquinone, p-benzoquinone and catechol), 10-3 to 10-2 for the mineralization of acids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Benzylpenicillin (PENG) have been as the active ingredient in veterinary medicinal products, to increase productivity, due to its therapeutic properties. However, one of unfortunate quality and used indiscriminately, resulting in residues in foods exposed to human consumption, especially in milk that is essential to the diet of children and the ageing. Thus, it is indispensable to develop new methods able to detect this waste food, at levels that are toxic to human health, in order to contribute to the food security of consumers and collaborate with regulatory agencies in an efficient inspection. In this work, were developed methods for the quality control of veterinary drugs based on Benzylpenicillin (PENG) that are used in livestock production. Additionally, were validated methodologies for identifying and quantifying the antibiotic residues in milk bovine and caprine. For this, the analytical control was performed two steps. At first, the groups of samples of medicinal products I, II, III, IV and V, individually, were characterized by medium infrared spectroscopy (4000 – 600 cm-1). Besides, 37 samples, distributed in these groups, were analyzed by spectroscopy in the ultraviolet and near infrared region (UV VIS NIR) and Ultra Fast Liquid Chromatograph coupled to linear arrangement photodiodes (UFLC-DAD). The results of the characterization indicated similarities, between PENG and reference standard samples, primarily in regions of 1818 to 1724 cm-1 of ν C=O that shows primary amides features of PENG. The method by UFLC-DAD presented R on 0.9991. LOD of 7.384 × 10-4 μg mL-1. LOQ of 2.049 × 10-3 μg mL-1. The analysis shows that 62.16% the samples presented purity ≥ 81.21%. The method by spectroscopy in the UV VIS NIR presented medium error ≤ 8 – 12% between the reference and experimental criteria, indicating is a secure choice for rapid determination of PENG. In the second stage, was acquiring a method for the extraction and isolation of PENG by the addition of buffer McIlvaine, used for precipitation of proteins total, at pH 4.0. The results showed excellent recovery values PENG, being close to 92.05% of samples of bovine milk (method 1). While samples of milk goats (method 2) the recovery of PENG were 95.83%. The methods for UFLC-DAD have been validated in accordance with the maximum residue limit (LMR) of 4 μg Kg-1 standardized by CAC/GL16. Validation of the method 1 indicated R by 0.9975. LOD of 7.246 × 10-4 μg mL-1. LOQ de 2.196 × 10-3 μg mL-1. The application of the method 1 showed that 12% the samples presented concentration of residues of PENG > LMR. The method 2 indicated R by 0.9995. LOD 8.251 × 10-4 μg mL-1. LOQ de 2.5270 × 10-3 μg mL-1. The application of the method showed that 15% of the samples were above the tolerable. The comparative analysis between the methods pointed better validation for LCP samples, because the reduction of the matrix effect, on this account the tcalculs < ttable, caused by the increase of recovery of the PENG. In this mode, all the operations developed to deliver simplicity, speed, selectivity, reduced analysis time and reagent use and toxic solvents, particularly if compared to the established methodologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Benzylpenicillin (PENG) have been as the active ingredient in veterinary medicinal products, to increase productivity, due to its therapeutic properties. However, one of unfortunate quality and used indiscriminately, resulting in residues in foods exposed to human consumption, especially in milk that is essential to the diet of children and the ageing. Thus, it is indispensable to develop new methods able to detect this waste food, at levels that are toxic to human health, in order to contribute to the food security of consumers and collaborate with regulatory agencies in an efficient inspection. In this work, were developed methods for the quality control of veterinary drugs based on Benzylpenicillin (PENG) that are used in livestock production. Additionally, were validated methodologies for identifying and quantifying the antibiotic residues in milk bovine and caprine. For this, the analytical control was performed two steps. At first, the groups of samples of medicinal products I, II, III, IV and V, individually, were characterized by medium infrared spectroscopy (4000 – 600 cm-1). Besides, 37 samples, distributed in these groups, were analyzed by spectroscopy in the ultraviolet and near infrared region (UV VIS NIR) and Ultra Fast Liquid Chromatograph coupled to linear arrangement photodiodes (UFLC-DAD). The results of the characterization indicated similarities, between PENG and reference standard samples, primarily in regions of 1818 to 1724 cm-1 of ν C=O that shows primary amides features of PENG. The method by UFLC-DAD presented R on 0.9991. LOD of 7.384 × 10-4 μg mL-1. LOQ of 2.049 × 10-3 μg mL-1. The analysis shows that 62.16% the samples presented purity ≥ 81.21%. The method by spectroscopy in the UV VIS NIR presented medium error ≤ 8 – 12% between the reference and experimental criteria, indicating is a secure choice for rapid determination of PENG. In the second stage, was acquiring a method for the extraction and isolation of PENG by the addition of buffer McIlvaine, used for precipitation of proteins total, at pH 4.0. The results showed excellent recovery values PENG, being close to 92.05% of samples of bovine milk (method 1). While samples of milk goats (method 2) the recovery of PENG were 95.83%. The methods for UFLC-DAD have been validated in accordance with the maximum residue limit (LMR) of 4 μg Kg-1 standardized by CAC/GL16. Validation of the method 1 indicated R by 0.9975. LOD of 7.246 × 10-4 μg mL-1. LOQ de 2.196 × 10-3 μg mL-1. The application of the method 1 showed that 12% the samples presented concentration of residues of PENG > LMR. The method 2 indicated R by 0.9995. LOD 8.251 × 10-4 μg mL-1. LOQ de 2.5270 × 10-3 μg mL-1. The application of the method showed that 15% of the samples were above the tolerable. The comparative analysis between the methods pointed better validation for LCP samples, because the reduction of the matrix effect, on this account the tcalculs < ttable, caused by the increase of recovery of the PENG. In this mode, all the operations developed to deliver simplicity, speed, selectivity, reduced analysis time and reagent use and toxic solvents, particularly if compared to the established methodologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The expansion of cultivated areas with genetically modified crops (GM) is a worldwide phenomenon, stimulating regulatory authorities to implement strict procedures to monitor and verify the presence of GM varieties in agricultural crops. With the constant growing of plant cultivating areas all over the world, consumption of aflatoxin-contaminated food also increased. Aflatoxins correspond to a class of highly toxic contaminants found in agricultural products that can have harmful effects on human and animal health. Therefore, the safety and quality evaluation of agricultural products are important issues for consumers. Lateral flow tests (strip tests) is a promising method for the detection both proteins expressed in GM crops and aflatoxins-contaminated food samples. The advantages of this technique include its simplicity, rapidity and cost-effective when compared to the conventional methods. In this study, two novel and sensitive strip tests assay were developed for the identification of: (i) Cry1Ac and Cry8Ka5 proteins expressed in GM cotton crops and; (ii) aflatoxins from agricultural products. The first strip test was developed using a sandwhich format, while the second one was developed using a competitive format. Gold colloidal nanoparticles were used as detector reagent when coated with monoclonal antibodies. An anti-species specific antibody was sprayed at the nitrocellulose membrane to be used as a control line. To validate the first strip test, GM (Bollgard I® e Planta 50- EMBRAPA) and non-GM cotton leaf (Cooker 312) were used. The results showed that the strip containing antibodies for the identification of Cry1Ac and Cry8Ka5 proteins was capable of correctly distinguishing between GM samples (positive result) and non-GM samples (negative result), in a high sensitivity manner. To validate the second strip test, artificially contaminated soybean with Aspergillus flavus (aflatoxin-producing fungus) was employed. Food samples, such as milk and soybean, were also evaluated for the presence of aflatoxins. The strip test was capable to distinguish between samples with and without aflatoxins samples, at a sensitivity concentration of 0,5 μg/Kg. Therefore, these results suggest that the strip tests developed in this study can be a potential tool as a rapid and cost-effective method for detection of insect resistant GM crops expressing Cry1Ac and Cry8Ka5 and aflatoxins from food samples.