5 resultados para Rábitas
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The chaotic behavior has been widely observed in nature, from physical and chemical phenomena to biological systems, present in many engineering applications and found in both simple mechanical oscillators and advanced communication systems. With regard to mechanical systems, the effects of nonlinearities on the dynamic behavior of the system are often of undesirable character, which has motivated the development of compensation strategies. However, it has been recently found that there are situations in which the richness of nonlinear dynamics becomes attractive. Due to their parametric sensitivity, chaotic systems can suffer considerable changes by small variations on the value of their parameters, which is extremely favorable when we want to give greater flexibility to the controlled system. Hence, we analyze in this work the parametric sensitivity of Duffing oscillator, in particular its unstable periodic orbits and Poincar´e section due to changes in nominal value of the parameter that multiplies the cubic term. Since the amount of energy needed to stabilize Unstable Periodic Orbits is minimum, we analyze the control action needed to control and stabilize such orbits which belong to different versions of the Duffing oscillator. For that we will use a smoothed sliding mode controller with an adaptive compensation term based on Fourier series.
Resumo:
The Multilateral Trading System has evolved and presented new international mandatory rules to States. Along with the World Trade Organization constitutive treaty, Brazil has incorporated the Agreement on Subsidies and Countervailing Measures (ASCM) in the national legal system. That treaty limits de scope of subsidies concession by governments since this practice can constitute a mechanism of commercial disloyalty, affecting national industrial development in the importing country. At the same time, the multilateral agreement grants defense legitimate instruments to States, among them the possibility of domestically and unilaterally imposing countervailing measures to subsidized products that enter the national territory. Since the issue concerns both international and domestic level in complementary grounds, this research, besides investigating the treaty related obligation, aims at studying the national legal fundaments to ASCM s application by the Brazilian State. Therefore, the essential point resides in the State s conduction of its international trading and also in its available and constitutionally established mechanisms of economic intervention. State s regulating power reveals itself as a fundamental prerogative to succeed in the internalization of international agreement s requirements in the domestic legal system, which represents a basic prerequisite to the implementation of countervailing measures. Once the whole normative outlines are apprehended, this study shall scan the administrative process of trading defense main elements, along with the means of controlling public administration acts. The action taken by the public organs that directly intervene in foreign trade shall be analyzed as well, so as to enable reasoning if the unilateral application of countervailing duties by the Brazilian State is happening on legitimacy grounds
Resumo:
To enhance the maintenance practices, Oil and Gas Pipelines are inspected from the inside by automated systems called PIG (Pipeline Inspection Gauge). The inspection and mapping of defects, as dents and holes, in the internal wall of these pipelines are increasingly put into service toward an overall Structural Integrity Policy. The residual life of these structures must be determined such that minimize its probability of failure. For this reason, the investigation on the detection limits of some basic topological features constituted by peaks or valleys disposed along a smooth surface is of great value for determining the sensitivity of the measurements of defects from some combinations of circumferential, axial and radial extent. In this investigation, it was analyzed an inductive profilometric sensor to scan three races, radius r1, r2, r3, in a circular surface of low carbon steel, equipped with eight consecutive defects simulated by bulges and holes by orbit, equally spaced at p/4 rad. A test rig and a methodology for testing in laboratory were developed to evaluate the sensor response and identify their dead zones and jumps due to fluctuations as a function of topological features and scanning velocity, four speeds different. The results are presented, analyzed and suggestions are made toward a new conception of sensor topologies, more sensible to detect these type of damage morphologies
Resumo:
In the present work, we have studied the nature of the physical processes of the coronal heating, considering as basis significant samples of single and binary evolved stars, that have been achieved with the ROSAT satellite. In a total of 191 simple stars were studied, classified in the literature as giants with spectral type F, G and K. The results were compared with those obtained from 106 evolved stars of spectral type F, G and K, which belong to the spectroscopic binary systems. Accurate measurements on rotation and information about binarity were obtained from De Medeiros s catalog. We have analysed the behavior of the coronal activity in function of diverse stellar parameters. With the purpose to better clarify the profile of the stars evolution, the HR diagram was built for the two samples of stars, the single and the binary ones. The evolved traces added in the diagram were obtained from the Toulouse-Geneve code, Nascimento et al. (2000). The stars were segregated in this diagram not only in range of rotational speed but also in range of X-ray flux. Our analysis shows clearly that the single stars and the binary ones have coronal activity controlled by physical process independent on the rotation. Non magnetic processes seem to be strongly influencing the coronal heating. For the binary stars, we have also studied the behavior of the coronal emission as a function of orbital parameters, such as period and eccentricity, in which it was revealed the existence of a discontinuity in the emission of X-rays around an orbital period of 100 days. The study helped to conclude that circular orbits of the binary stars are presented as a necessary property for the existence of a higher level ofX-rays emission, suggesting that the effect of the gravitational tide has an important role in the coronal activity level. When applied the Kolmogorov-Smirnov test (KS test ) for the Vsini and FX parameters to the samples of single and binary stars, we could evidence very relevant aspects for the understanding of the mechanisms inherent to the coronal activity. For the Vsini parameter, the differences between the single stars and the binary ones for rotation over 6.3 km/s were really remarkable. We believe, therefore, that the existence of gravitational tide is, at least, one of the factors that most contribute for this behavior. About the X-rays flux, the KS test showed that the behavior of the single and the binary stars, regarding the coronal activity, comes from the same origin
Resumo:
On this study we have revisited the predicted tidal circularization theory in close binary systems with a evolved component. Close binaries suffer tidal interactions that tend to synchronize periods and circularize the orbits (Zahn 1977, 1989, 1992). According to Zahn s theory we compute the integral that give us the variation of the eccentricity in a binary under the influence of tidal force and we compare the integral results with new observations for 260 binary systems with orbital solutions. Our results confirm the success of the Zahn s theory with a new data and new stellar evolutionary models, on the other hand, our results points to the need for a better description of the role of convection on this theory