96 resultados para Pigmentos. Métodos de polimerização de complexos. Planejamento fatorial fracionado
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Synthetic inorganic pigments are the most widely used in ceramic applications because they have excellent chemical and thermal stability and also, in general, a lower toxicity to man and to the environment. In the present work, the ceramic black pigment CoFe2O4 was synthesized by the polymerization Complex method (MPC) in order to form a material with good chemical homogeneity. Aiming to optimize the process of getting the pigment through the MPC was used a fractional factorial design 2(5-2), with resolution III. The factors studied in mathematical models were: citric acid concentration, the pyrolysis time, temperature, time and rate of calcination. The response surfaces using the software statistica 7.0. The powders were characterized by thermal analysis (TG/DSC), x-ray diffraction (XRD), scanning electron microscopy (SEM) and spectroscopy in the UV-visible. Based on the results, there was the formation of phase cobalt ferrite (CoFe2O4) with spinel structure. The color of the pigments obtained showed dark shades, from black to gray. The model chosen was appropriate since proved to be adjusted and predictive. Planning also showed that all factors were significant, with a confidence level of 95%
Resumo:
Synthetic inorganic pigments are the most widely used in ceramic applications because they have excellent chemical and thermal stability and also, in general, a lower toxicity to man and to the environment. In the present work, the ceramic black pigment CoFe2O4 was synthesized by the polymerization Complex method (MPC) in order to form a material with good chemical homogeneity. Aiming to optimize the process of getting the pigment through the MPC was used a fractional factorial design 2(5-2), with resolution III. The factors studied in mathematical models were: citric acid concentration, the pyrolysis time, temperature, time and rate of calcination. The response surfaces using the software statistica 7.0. The powders were characterized by thermal analysis (TG/DSC), x-ray diffraction (XRD), scanning electron microscopy (SEM) and spectroscopy in the UV-visible. Based on the results, there was the formation of phase cobalt ferrite (CoFe2O4) with spinel structure. The color of the pigments obtained showed dark shades, from black to gray. The model chosen was appropriate since proved to be adjusted and predictive. Planning also showed that all factors were significant, with a confidence level of 95%
Resumo:
In the ceramics industry are becoming more predominantly inorganic nature pigments. Studies in this area allow you to develop pigments with more advanced properties and qualities to be used in the industrial context. Studies on synthesis and characterization of cobalt aluminate has been widely researched, cobalt aluminate behavior at different temperatures of calcinations, highlighting especially the temperatures of 700, 800 and 900° C that served as a basis in the development of this study, using the method of polymerization of complex (CPM), economic, and this method applied in ceramic pigment synthesis. The procedure was developed from a fractional factorial design 2 (5-2) in order to optimize the process of realization of the cobalt aluminate (CoAl2O4), having as response surfaces the batch analysis data of Uv-vis spectroscopy conducted from the statistic software 7.0, for this were chosen five factors as input variables: citric acid (stoichiometric manner), puff or pyrolysis time (h), temperature (° C), and calcinations (° C/min), at levels determined for this study. By applying statistics in the process of obtaining the CoAl2O4 is possible the study of these factors and which may have greater influence in getting the synthesis. The pigments characterized TG/DSC analyses, and x-ray diffraction (XRD) and scanning electron microscope (SEM/EDS) in order to establish the structural and morphological aspects of pigment CoAl2O4, among the factors studied it were found to statically with increasing calcinations temperature 700°< 800 <900 °C, the bands of Uv-vis decrease with increasing intensity of absorbance and that with increasing time of puff or pyrolysis (h) there is an increase in bands of Uv-vis proportionally, the generated model set for the conditions proposed in this study because the coefficient of determination can explain about 99.9% of the variance (R²), response surfaces generated were satisfactory, so it s possible applicability in the ceramics industry of pigments
Resumo:
In the ceramics industry are becoming more predominantly inorganic nature pigments. Studies in this area allow you to develop pigments with more advanced properties and qualities to be used in the industrial context. Studies on synthesis and characterization of cobalt aluminate has been widely researched, cobalt aluminate behavior at different temperatures of calcinations, highlighting especially the temperatures of 700, 800 and 900° C that served as a basis in the development of this study, using the method of polymerization of complex (CPM), economic, and this method applied in ceramic pigment synthesis. The procedure was developed from a fractional factorial design 2 (5-2) in order to optimize the process of realization of the cobalt aluminate (CoAl2O4), having as response surfaces the batch analysis data of Uv-vis spectroscopy conducted from the statistic software 7.0, for this were chosen five factors as input variables: citric acid (stoichiometric manner), puff or pyrolysis time (h), temperature (° C), and calcinations (° C/min), at levels determined for this study. By applying statistics in the process of obtaining the CoAl2O4 is possible the study of these factors and which may have greater influence in getting the synthesis. The pigments characterized TG/DSC analyses, and x-ray diffraction (XRD) and scanning electron microscope (SEM/EDS) in order to establish the structural and morphological aspects of pigment CoAl2O4, among the factors studied it were found to statically with increasing calcinations temperature 700°< 800 <900 °C, the bands of Uv-vis decrease with increasing intensity of absorbance and that with increasing time of puff or pyrolysis (h) there is an increase in bands of Uv-vis proportionally, the generated model set for the conditions proposed in this study because the coefficient of determination can explain about 99.9% of the variance (R²), response surfaces generated were satisfactory, so it s possible applicability in the ceramics industry of pigments
Resumo:
In recent decades, the generation of solid and liquid waste has increased substantially due to increased industrial activity that is directly linked to economic growth. For that is the most efficient process, it is inevitable generation of such wastes. In the oil industry, a major waste generated in oil exploration is produced water, which due to its complex composition and the large amount generated, has become a challenge, given the restrictions imposed by environmental laws regarding their disposal, making if necessary create alternatives for reuse or treatment in order to reduce the content of contaminants and reduce the harmful effects to the environment. This water can be present in free form or emulsified with the oil, when in the form of an emulsion of oil-water type, it is necessary to use chemicals to promote the separation and flotation is the treatment method which has proved to be more efficient, for it can remove much of the emulsified oil when compared to other methods. In this context, the object of this work was to study the individual effects and interactions of some physicochemical parameters of operations, based on previous work to a flotation cell used in the separation of synthetic emulsion oil / water in order to optimize the efficiency of the separation process through of the 24 full factorial design with center point. The response variables to evaluate the separation efficiency was the percentage of color and turbidity removal. The independent variables were: concentration of de-emulsifying, oil content in water, salinity and pH, these being fixed, minimum and maximum limits. The analysis of variance for the equation of the empirical model, was statistically significant and useful for predictive purposes the separation efficiency of the floater with R2 > 90%. The results showed that the oil content in water and the interaction between the oil content in water and salinity, showed the highest values of the estimated effects among all the factors investigated, having great and positive influence on the separation efficiency. By analyzing the response surface was determined maximum removal efficiency above 90% for both measured for turbidity as a measure of color when in a saline medium (30 g/L), the high oil concentrations (306 ppm) using low concentrations of de-emulsifying (1,1 ppm) and at pH close to neutral
Resumo:
Recent studies are investigating a new class of inorganic materials which arise as a promising option for high performance applications in the field of photoluminescence. Highlight for rare earth (TR +3 ) doped, which have a high luminous efficiency, long decay time and being able to emit radiation in the visible range, specific to each element. In this study, we synthesized ZrO2: Tb +3 , Eu +3 , Tm +3 nanoparticles complex polymerization method (CPM). We investigated the influences caused by the heat treatment temperature and the content of dopants in zirconia photoluminescent behavior. The particles were calcined at temperature of 400, 500 and 600 ° C for two hours and ranged in concentration of dopants 1, 2, 4 and 8 mol% TR +3 . The samples were characterized by thermal analysis, X-ray diffraction, photoluminescence of measurements and uv-visible of spectroscopies. The results of X-ray diffraction confirmed the formation of the tetragonal and cubic phases in accordance with the content of dopants. The photoluminescence spectra show emission in the region corresponding simultaneous to blue (450 nm), green (550 nm) and red (615 nm). According to the results, ZrO2 particles co-doped with rare earth ions is a promising material white emission with a potential application in the field of photoluminescence
Resumo:
The environmental impact caused by the disposal of non-biodegradable polymer packaging on the environment, as well as the high price and scarcity of oil, caused increase of searches in the area of biodegradable polymers from renewable resources were developed. The poly (lactic acid) (PLA) is a promising polymer in the market, with a large availability of raw material for the production of its monomer, as well as good processability. The aimed of this study was synthesis PLA by direct polycondesation of lactic acid, using the tool of experimental design (DOE) (central composite rotatable design (CCRD)) to optimize the conditions of synthesis. The polymer obtained was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), viscosimetric analysis, differential scanning calorimeter (DSC) and size exclusion chromatography (SEC). The results confirmed the formation of a poly (lactic acid) semicrystalline in the syntheses performed. Through the central composite rotatable design was possible to optimize the crystallization temperature (Tc) and crystallinity degree (Xc). The crystallization temperature maximum was found for percentage of catalyst around the central point (0,3 (%W)) and values of time ranging from the central point (6h) to the upper level (+1) (8h). The crystallization temperature maximum was found for the total synthesis time of 4h (-1) and percentage of catalyst 0,1(W%) (-1). The results of size exclusion chromatography (SEC) showed higher molecular weights to 0,3 (W%) percent of catalyst and total time synthesis of 3,2h
Resumo:
This work deals with the kinetics assay of Cajá (Spondias mombin L.) bagasse drying by an experimental design using a tray dryer. In order to add-value to this product a kinetic study has been carried out. A central composite experimental design has been carried out to evaluate the influence of the operational variables: input air temperature (55; 65 e 75ºC); the drying air velocity (3.2; 4.6 e 6.0 m/s) and the fixed bed thickness (0.8; 1.2 e 1.6 cm) and as response variable the the moisture content (dry basis). The results showed that the diffusional Fick model fitted quite well the experimental data. The best condition found has been input air temperature of 75ºC, drying air velocity of 6.0 m/s as well as fixed bed thickness of 0.8 cm. The experimental design assay showed that the main effects as well as the second ones were significant at 95% confindance level. The best operational condition according to statistical planning was 75 oC input air temperature, 6.0 m.s-1 drying air velocity and 0.8 cm fixed bed thickness. In this case, the equilibrium moisture content (1.3% dry basis) occured at 220 minutes
Resumo:
PAHs (Polycyclic Aromatic Hydrocarbons) are a group of organic substances which receive considerable attention because of the carcinogenic and mutagenic properties of some of them. It is therefore important to determine the PAHs in different environmental matrices. Several studies have shown the use of gas chromatography coupled to mass spectrometry as a technique for quantification of PAHs by presenting excellent detection limits. This study aimed to develop an analytical methodology for the determination of 16 PAHs listed by the USEPA, test two methods for extraction of PAHs in water from a 23 factorial design, quantify them through the analytical technique coupled to gas chromatography mass spectrometry (GC/MS) using the method developed, and finally apply the results in chemometrics. The sample was synthesized and subjected to tests of the 23 factorial design, which has the factors: the type of extraction technique (ultrasound and digester), the ratio solvent / sample (1:1 and 1:3) and the type of solvent (dichloromethane / hexane and acetone / dichloromethane). The responses of eight combinations of the factorial design were obtained from the quantification by external calibration in GC/MS. The quantification method was developed from an optimized adaptation of the USEPA Method 8270. We used the full scan mode as a way of acquiring the mass spectra of 16 PAHs. The time in which the samples were subjected to ultrasound was fixed at 10 min and held an investigation to establish the conditions of power and time in the digester. We had the best response in the investigation of the digester power of 100 watts and the time of six minutes. The factorial design of liquid-liquid extraction showed that the most representative factors were: the use of the digester as extraction technique, the ratio solvent / sample 1:1 and the use of a 1:1 mixture of dichloromethane / hexane as a solvent more suitable. These results showed that the 1:1 mixture of dichloromethane / hexane is an excellent mixture to recover the extraction of PAHs an aqueous sample using the microwave digester. The optimization of the method of separation, identification and quantification of PAHs in the GC/MS was valid for 16 PAHs present in each chromatogram of the samples
Resumo:
Recent studies are investigating a new class of inorganic materials which arise as a promising option for high performance applications in the field of photoluminescence. Highlight for rare earth (TR +3 ) doped, which have a high luminous efficiency, long decay time and being able to emit radiation in the visible range, specific to each element. In this study, we synthesized ZrO2: Tb +3 , Eu +3 , Tm +3 nanoparticles complex polymerization method (CPM). We investigated the influences caused by the heat treatment temperature and the content of dopants in zirconia photoluminescent behavior. The particles were calcined at temperature of 400, 500 and 600 ° C for two hours and ranged in concentration of dopants 1, 2, 4 and 8 mol% TR +3 . The samples were characterized by thermal analysis, X-ray diffraction, photoluminescence of measurements and uv-visible of spectroscopies. The results of X-ray diffraction confirmed the formation of the tetragonal and cubic phases in accordance with the content of dopants. The photoluminescence spectra show emission in the region corresponding simultaneous to blue (450 nm), green (550 nm) and red (615 nm). According to the results, ZrO2 particles co-doped with rare earth ions is a promising material white emission with a potential application in the field of photoluminescence
Resumo:
The environmental impact caused by the disposal of non-biodegradable polymer packaging on the environment, as well as the high price and scarcity of oil, caused increase of searches in the area of biodegradable polymers from renewable resources were developed. The poly (lactic acid) (PLA) is a promising polymer in the market, with a large availability of raw material for the production of its monomer, as well as good processability. The aimed of this study was synthesis PLA by direct polycondesation of lactic acid, using the tool of experimental design (DOE) (central composite rotatable design (CCRD)) to optimize the conditions of synthesis. The polymer obtained was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), viscosimetric analysis, differential scanning calorimeter (DSC) and size exclusion chromatography (SEC). The results confirmed the formation of a poly (lactic acid) semicrystalline in the syntheses performed. Through the central composite rotatable design was possible to optimize the crystallization temperature (Tc) and crystallinity degree (Xc). The crystallization temperature maximum was found for percentage of catalyst around the central point (0,3 (%W)) and values of time ranging from the central point (6h) to the upper level (+1) (8h). The crystallization temperature maximum was found for the total synthesis time of 4h (-1) and percentage of catalyst 0,1(W%) (-1). The results of size exclusion chromatography (SEC) showed higher molecular weights to 0,3 (W%) percent of catalyst and total time synthesis of 3,2h
Resumo:
Hexavalent chromium is a heavy metal present in various industrial effluents, and depending on its concentration may cause irreparable damage to the environment and to humans. Facing this surrounding context, this study aimed on the application of electrochemical methods to determine and remove the hexavalent chromium (Cr6+) in simulated wastewater. To determine was applied to cathodic stripping voltammetry (CSV) using ultra trace graphite electrodes ultra trace (work), Ag/AgCl (reference) and platinum (counter electrode), the samples were complexed with 1,5- diphenylcarbazide and then subjected to analysis. The removal of Cr6+ was applied electrocoagulation process (EC) using Fe and Al electrodes. The variables that constituted the factorial design 24, applied to optimizing the EC process, were: current density (5 and 10 mA.cm-2), temperature (25 and 60 ºC), concentration (50 and 100 ppm) and agitation rate (400 and 600 RPM). Through the preliminary test it was possible the adequacy of applying the CSV for determining of Cr6+, removed during the EC process. The Fe and Al electrodes as anodes sacrifice showed satisfactory results in the EC process, however Fe favored complete removal in 30 min, whereas with Al occurred at 240 min. In the application of factorial design 24 and analysis of Response Surface Methodology was possible to optimize the EC process for removal of Cr6+ in H2SO4 solution (0.5 mol.L-1), in which the temperature, with positive effect, was the variable that presented higher statistical significance compared with other variables and interactions, while in optimizing the EC process for removal of Cr6+ in NaCl solution (0.1 mol.L-1) the current density, with positive effect, and concentration, with a negative effect were the variables that had greater statistical significance with greater statistical significance compared with other variables and interactions. The utilization of electrolytes supports NaCl and Na2SO4 showed no significant differences, however NaCl resulted in rapid improvement in Cr6+ removal kinetics and increasing the NaCl concentration provided an increase in conductivity of the solution, resulting in lower energy consumption. The wear of the electrodes evaluated in all the process of EC showed that the Al in H2SO4 solution (0.5 mol.L-1), undergoes during the process of anodization CE, then the experimental mass loss is less than the theoretical mass loss, however, the Fe in the same medium showed a loss of mass greater experimental estimated theoretically. This fact is due to a spontaneous reaction of Fe with H2SO4, and when the reaction medium was the NaCl and Na2SO4 loss experimental mass approached the theoretical mass loss. Furthermore, it was observed the energy consumption of all processes involved in this study had a low operating cost, thus enabling the application of the EC process for treating industrial effluents. The results were satisfactory, it was achieved complete removal of Cr6+ in all processes used in this study.
Resumo:
The acquisition of oligosaccharides from chitosan has been the subject of several studies in the pharmaceutical, biochemical, food and medical due to functional properties of these compounds. This study aimed to boost its production of chitooligosaccharides (COS) through the optimization of production and characterization of chitosanolytic enzymes secreted by microorganisms Paenibacillus chitinolyticus and Paenibacillus ehimensis, and evaluating the antioxidant potential of the products obtained. In the process of optimizing the production of chitosanase were employed strategies Fractional Factorial Experimental Design and Central Composite Rotatable Design. The results identified the chitosan, peptone and yeast extract as the components that influenced the production of chitosanase by these microorganisms. With the optimization of the culture media was possible to obtain an increase of approximately 8.1 times (from 0.043 to 0.35 U.mL U.mL-1) and 7.6 times (from 0.08 U.mL-1 to 0.61 U.mL-1) in the enzymatic activity of chitosanase produced by P. chitinolyticus and P. ehimensis respectively. Enzyme complexes showed high stability in temperature ranges between 30º and 55º C and pH between 5.0 and 9.0. Has seen the share of organic solvents, divalent ions and other chemical agents on the activity of these enzymes, demonstrating high stability of these crude complexes and dependence of Mn2+. The COS generated showed the ability of DPPH radical scavenging activity, reaching a maximum rate of scavenging of 61% and 39% when they were produced with enzymes of P. ehimensis and P. chitinolyticus respectively. The use of these enzymes in raw form might facilitate its use for industrial applications
Resumo:
With the advances in medicine, life expectancy of the world population has grown considerably in recent decades. Studies have been performed in order to maintain the quality of life through the development of new drugs and new surgical procedures. Biomaterials is an example of the researches to improve quality of life, and its use goes from the reconstruction of tissues and organs affected by diseases or other types of failure, to use in drug delivery system able to prolong the drug in the body and increase its bioavailability. Biopolymers are a class of biomaterials widely targeted by researchers since they have ideal properties for biomedical applications, such as high biocompatibility and biodegradability. Poly (lactic acid) (PLA) is a biopolymer used as a biomaterial and its monomer, lactic acid, is eliminated by the Krebs Cycle (citric acid cycle). It is possible to synthesize PLA through various synthesis routes, however, the direct polycondensation is cheaper due the use of few steps of polymerization. In this work we used experimental design (DOE) to produce PLAs with different molecular weight from the direct polycondensation of lactic acid, with characteristics suitable for use in drug delivery system (DDS). Through the experimental design it was noted that the time of esterification, in the direct polycondensation, is the most important stage to obtain a higher molecular weight. The Fourier Transform Infrared (FTIR) spectrograms obtained were equivalent to the PLAs available in the literature. Results of Differential Scanning Calorimetry (DSC) showed that all PLAs produced are semicrystalline with glass transition temperatures (Tgs) ranging between 36 - 48 °C, and melting temperatures (Tm) ranging from 117 to 130 °C. The PLAs molecular weight characterized from Size Exclusion Chromatography (SEC), varied from 1000 to 11,000 g/mol. PLAs obtained showed a fibrous morphology characterized by Scanning Electron Microscopy (SEM)
Resumo:
The oil activity in the Rio Grande do Norte State (RN) is a permanent threat to coastal ecosystems, particularly mangroves, with the possibility of oil spills. In this context, the objective of this study was to evaluate the potential resistance of the mangrove environment of a possible spill. Were selected and isolated microorganisms degrading oil by the technique of enrichment cultures and formation of a bacterial consortium. The kinetic study of the consortium was held in rotary incubator shaken at 150 rpm and 30° C. Samples were taken at intervals of 4 hours for analysis of cell concentration and surface tension. The biodegradation was monitored using two methods of respirometry: manometric (OxiTop-C ®) and conductivimetry, where the biodegradation of oil was estimated indirectly by oxygen consumption and CO2 production, respectively. Furthermore, it was used a full 2² factorial design with triplicate at central point to the runs that used the conductivimetric methodology.. The technique of enrichment cultures allowed to obtain thirteen bacterial strains. Kinetic study of the consortium, we can showed the absence of the lag phase, reaching a maximum cell concentration of 2.55 g / L at 16 h of cultivation and a reduction on surface tension. When we adopted the methodology of OxiTop-C was detected a band indicating biodegradability (1% oil v/v), however when we used the conductivimetry methodology did not observe any band that would indicate effective biodegradation. By monitoring a process of biodegradation is necessary to observe the methodology will be adopted to evaluate the biodegradation process, since for the same conditions adopted different methodologies can produce different results. The oil-degrading isolates from soils of the mangrove estuary Potengi / RN are largely to be used in bioremediation strategies of these places, in the case of a possible oil spill, or it can be used in the treatment of waste oil generated in saline environments, since they are optimized the conditions of the tests so that the efficiency of biodegradation reach the minimum level suggested by the standarts