7 resultados para Penalized spline

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we have elaborated a spline-based method of solution of inicial value problems involving ordinary differential equations, with emphasis on linear equations. The method can be seen as an alternative for the traditional solvers such as Runge-Kutta, and avoids root calculations in the linear time invariant case. The method is then applied on a central problem of control theory, namely, the step response problem for linear EDOs with possibly varying coefficients, where root calculations do not apply. We have implemented an efficient algorithm which uses exclusively matrix-vector operations. The working interval (till the settling time) was determined through a calculation of the least stable mode using a modified power method. Several variants of the method have been compared by simulation. For general linear problems with fine grid, the proposed method compares favorably with the Euler method. In the time invariant case, where the alternative is root calculation, we have indications that the proposed method is competitive for equations of sifficiently high order.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hormone therapy is an important tool in the treatment of breast cancer and tamoxifen represents one of the most important drugs used in this type of treatment. Recently other drugs based on the inhibition of aromatase had been developed, this enzyme is responsible for the synthesis of estrogenic esteroids from the androgenic ones. The objective of this study would be the development of a quantitative cytological model of murine estral analysis that allowed the characterization of different hormone drugs effect over vaginal epithelium. The technique of monochromatic staining with Evans blue (C.I. 23860) showed to be efficient in the qualitative and quantitative classification of the cycle. It had been observed differences in the cytological standard of animals submitted to the studied drugs; tamoxifen presented a widening of phases of lesser maturation (diestrais), while anastrozole and exemestane increased the duration of the phases of larger maturation (estrais). The data were analysed through a cubical non linear regression (spline) which allowed a better characterization of the drugs, suggesting a proper cytological profile to the antagonism of the estrogen receptor (tamoxifen), aromatase competition (anastrozole) and inhibition of the enzyme (exemestane)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an evaluative study about the effects of using a machine learning technique on the main features of a self-organizing and multiobjective genetic algorithm (GA). A typical GA can be seen as a search technique which is usually applied in problems involving no polynomial complexity. Originally, these algorithms were designed to create methods that seek acceptable solutions to problems where the global optimum is inaccessible or difficult to obtain. At first, the GAs considered only one evaluation function and a single objective optimization. Today, however, implementations that consider several optimization objectives simultaneously (multiobjective algorithms) are common, besides allowing the change of many components of the algorithm dynamically (self-organizing algorithms). At the same time, they are also common combinations of GAs with machine learning techniques to improve some of its characteristics of performance and use. In this work, a GA with a machine learning technique was analyzed and applied in a antenna design. We used a variant of bicubic interpolation technique, called 2D Spline, as machine learning technique to estimate the behavior of a dynamic fitness function, based on the knowledge obtained from a set of laboratory experiments. This fitness function is also called evaluation function and, it is responsible for determining the fitness degree of a candidate solution (individual), in relation to others in the same population. The algorithm can be applied in many areas, including in the field of telecommunications, as projects of antennas and frequency selective surfaces. In this particular work, the presented algorithm was developed to optimize the design of a microstrip antenna, usually used in wireless communication systems for application in Ultra-Wideband (UWB). The algorithm allowed the optimization of two variables of geometry antenna - the length (Ls) and width (Ws) a slit in the ground plane with respect to three objectives: radiated signal bandwidth, return loss and central frequency deviation. These two dimensions (Ws and Ls) are used as variables in three different interpolation functions, one Spline for each optimization objective, to compose a multiobjective and aggregate fitness function. The final result proposed by the algorithm was compared with the simulation program result and the measured result of a physical prototype of the antenna built in the laboratory. In the present study, the algorithm was analyzed with respect to their success degree in relation to four important characteristics of a self-organizing multiobjective GA: performance, flexibility, scalability and accuracy. At the end of the study, it was observed a time increase in algorithm execution in comparison to a common GA, due to the time required for the machine learning process. On the plus side, we notice a sensitive gain with respect to flexibility and accuracy of results, and a prosperous path that indicates directions to the algorithm to allow the optimization problems with "η" variables

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work proposes a computational methodology to solve problems of optimization in structural design. The application develops, implements and integrates methods for structural analysis, geometric modeling, design sensitivity analysis and optimization. So, the optimum design problem is particularized for plane stress case, with the objective to minimize the structural mass subject to a stress criterion. Notice that, these constraints must be evaluated at a series of discrete points, whose distribution should be dense enough in order to minimize the chance of any significant constraint violation between specified points. Therefore, the local stress constraints are transformed into a global stress measure reducing the computational cost in deriving the optimal shape design. The problem is approximated by Finite Element Method using Lagrangian triangular elements with six nodes, and use a automatic mesh generation with a mesh quality criterion of geometric element. The geometric modeling, i.e., the contour is defined by parametric curves of type B-splines, these curves hold suitable characteristics to implement the Shape Optimization Method, that uses the key points like design variables to determine the solution of minimum problem. A reliable tool for design sensitivity analysis is a prerequisite for performing interactive structural design, synthesis and optimization. General expressions for design sensitivity analysis are derived with respect to key points of B-splines. The method of design sensitivity analysis used is the adjoin approach and the analytical method. The formulation of the optimization problem applies the Augmented Lagrangian Method, which convert an optimization problem constrained problem in an unconstrained. The solution of the Augmented Lagrangian function is achieved by determining the analysis of sensitivity. Therefore, the optimization problem reduces to the solution of a sequence of problems with lateral limits constraints, which is solved by the Memoryless Quasi-Newton Method It is demonstrated by several examples that this new approach of analytical design sensitivity analysis of integrated shape design optimization with a global stress criterion purpose is computationally efficient

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents an optimization technique based on structural topology optimization methods, TOM, designed to solve problems of thermoelasticity 3D. The presented approach is based on the adjoint method of sensitivity analysis unified design and is intended to loosely coupled thermomechanical problems. The technique makes use of analytical expressions of sensitivities, enabling a reduction in the computational cost through the use of a coupled field adjoint equation, defined in terms the of temperature and displacement fields. The TOM used is based on the material aproach. Thus, to make the domain is composed of a continuous distribution of material, enabling the use of classical models in nonlinear programming optimization problem, the microstructure is considered as a porous medium and its constitutive equation is a function only of the homogenized relative density of the material. In this approach, the actual properties of materials with intermediate densities are penalized based on an artificial microstructure model based on the SIMP (Solid Isotropic Material with Penalty). To circumvent problems chessboard and reduce dependence on layout in relation to the final optimal initial mesh, caused by problems of numerical instability, restrictions on components of the gradient of relative densities were applied. The optimization problem is solved by applying the augmented Lagrangian method, the solution being obtained by applying the finite element method of Galerkin, the process of approximation using the finite element Tetra4. This element has the ability to interpolate both the relative density and the displacement components and temperature. As for the definition of the problem, the heat load is assumed in steady state, i.e., the effects of conduction and convection of heat does not vary with time. The mechanical load is assumed static and distributed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work is to make a brief discussion of methods to estimate the parameters of the Generalized Pareto distribution (GPD). Being addressed the following techniques: Moments (moments), Maximum Likelihood (MLE), Biased Probability Weighted Moments (PWMB), Unbiased Probability Weighted Moments (PWMU), Mean Power Density Divergence (MDPD), Median (MED), Pickands (PICKANDS), Maximum Penalized Likelihood (MPLE), Maximum Goodness-of-fit (MGF) and the Maximum Entropy (POME) technique, the focus of this manuscript. By way of illustration adjustments were made for the Generalized Pareto distribution, for a sequence of earthquakes intraplacas which occurred in the city of João Câmara in the northeastern region of Brazil, which was monitored continuously for two years (1987 and 1988). It was found that the MLE and POME were the most efficient methods, giving them basically mean squared errors. Based on the threshold of 1.5 degrees was estimated the seismic risk for the city, and estimated the level of return to earthquakes of intensity 1.5°, 2.0°, 2.5°, 3.0° and the most intense earthquake never registered in the city, which occurred in November 1986 with magnitude of about 5.2º

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We presented in this work two methods of estimation for accelerated failure time models with random e_ects to process grouped survival data. The _rst method, which is implemented in software SAS, by NLMIXED procedure, uses an adapted Gauss-Hermite quadrature to determine marginalized likelihood. The second method, implemented in the free software R, is based on the method of penalized likelihood to estimate the parameters of the model. In the _rst case we describe the main theoretical aspects and, in the second, we briey presented the approach adopted with a simulation study to investigate the performance of the method. We realized implement the models using actual data on the time of operation of oil wells from the Potiguar Basin (RN / CE).