5 resultados para Order-parameter
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
We study the critical behavior of the one-dimensional pair contact process (PCP), using the Monte Carlo method for several lattice sizes and three different updating: random, sequential and parallel. We also added a small modification to the model, called Monte Carlo com Ressucitamento" (MCR), which consists of resuscitating one particle when the order parameter goes to zero. This was done because it is difficult to accurately determine the critical point of the model, since the order parameter(particle pair density) rapidly goes to zero using the traditional approach. With the MCR, the order parameter becomes null in a softer way, allowing us to use finite-size scaling to determine the critical point and the critical exponents β, ν and z. Our results are consistent with the ones already found in literature for this model, showing that not only the process of resuscitating one particle does not change the critical behavior of the system, it also makes it easier to determine the critical point and critical exponents of the model. This extension to the Monte Carlo method has already been used in other contact process models, leading us to believe its usefulness to study several others non-equilibrium models
Resumo:
In this thesis, we address two issues of broad conceptual and practical relevance in the study of complex networks. The first is associated with the topological characterization of networks while the second relates to dynamical processes that occur on top of them. Regarding the first line of study, we initially designed a model for networks growth where preferential attachment includes: (i) connectivity and (ii) homophily (links between sites with similar characteristics are more likely). From this, we observe that the competition between these two aspects leads to a heterogeneous pattern of connections with the topological properties of the network showing quite interesting results. In particular, we emphasize that there is a region where the characteristics of sites play an important role not only for the rate at which they get links, but also for the number of connections which occur between sites with similar and dissimilar characteristics. Finally, we investigate the spread of epidemics on the network topology developed, whereas its dissemination follows the rules of the contact process. Using Monte Carlo simulations, we show that the competition between states (infected/healthy) sites, induces a transition between an active phase (presence of sick) and an inactive (no sick). In this context, we estimate the critical point of the transition phase through the cumulant Binder and ratio between moments of the order parameter. Then, using finite size scaling analysis, we determine the critical exponents associated with this transition
Resumo:
The diffusive epidemic process (PED) is a nonequilibrium stochastic model which, exhibits a phase trnasition to an absorbing state. In the model, healthy (A) and sick (B) individuals diffuse on a lattice with diffusion constants DA and DB, respectively. According to a Wilson renormalization calculation, the system presents a first-order phase transition, for the case DA > DB. Several researches performed simulation works for test this is conjecture, but it was not possible to observe this first-order phase transition. The explanation given was that we needed to perform simulation to higher dimensions. In this work had the motivation to investigate the critical behavior of a diffusive epidemic propagation with Lévy interaction(PEDL), in one-dimension. The Lévy distribution has the interaction of diffusion of all sizes taking the one-dimensional system for a higher-dimensional. We try to explain this is controversy that remains unresolved, for the case DA > DB. For this work, we use the Monte Carlo Method with resuscitation. This is method is to add a sick individual in the system when the order parameter (sick density) go to zero. We apply a finite size scalling for estimates the critical point and the exponent critical =, e z, for the case DA > DB
Resumo:
Various physical systems have dynamics that can be modeled by percolation processes. Percolation is used to study issues ranging from fluid diffusion through disordered media to fragmentation of a computer network caused by hacker attacks. A common feature of all of these systems is the presence of two non-coexistent regimes associated to certain properties of the system. For example: the disordered media can allow or not allow the flow of the fluid depending on its porosity. The change from one regime to another characterizes the percolation phase transition. The standard way of analyzing this transition uses the order parameter, a variable related to some characteristic of the system that exhibits zero value in one of the regimes and a nonzero value in the other. The proposal introduced in this thesis is that this phase transition can be investigated without the explicit use of the order parameter, but rather through the Shannon entropy. This entropy is a measure of the uncertainty degree in the information content of a probability distribution. The proposal is evaluated in the context of cluster formation in random graphs, and we apply the method to both classical percolation (Erd¨os- R´enyi) and explosive percolation. It is based in the computation of the entropy contained in the cluster size probability distribution and the results show that the transition critical point relates to the derivatives of the entropy. Furthermore, the difference between the smooth and abrupt aspects of the classical and explosive percolation transitions, respectively, is reinforced by the observation that the entropy has a maximum value in the classical transition critical point, while that correspondence does not occurs during the explosive percolation.
Resumo:
Various physical systems have dynamics that can be modeled by percolation processes. Percolation is used to study issues ranging from fluid diffusion through disordered media to fragmentation of a computer network caused by hacker attacks. A common feature of all of these systems is the presence of two non-coexistent regimes associated to certain properties of the system. For example: the disordered media can allow or not allow the flow of the fluid depending on its porosity. The change from one regime to another characterizes the percolation phase transition. The standard way of analyzing this transition uses the order parameter, a variable related to some characteristic of the system that exhibits zero value in one of the regimes and a nonzero value in the other. The proposal introduced in this thesis is that this phase transition can be investigated without the explicit use of the order parameter, but rather through the Shannon entropy. This entropy is a measure of the uncertainty degree in the information content of a probability distribution. The proposal is evaluated in the context of cluster formation in random graphs, and we apply the method to both classical percolation (Erd¨os- R´enyi) and explosive percolation. It is based in the computation of the entropy contained in the cluster size probability distribution and the results show that the transition critical point relates to the derivatives of the entropy. Furthermore, the difference between the smooth and abrupt aspects of the classical and explosive percolation transitions, respectively, is reinforced by the observation that the entropy has a maximum value in the classical transition critical point, while that correspondence does not occurs during the explosive percolation.