3 resultados para Optimal Linear Control
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
In this work a modification on ANFIS (Adaptive Network Based Fuzzy Inference System) structure is proposed to find a systematic method for nonlinear plants, with large operational range, identification and control, using linear local systems: models and controllers. This method is based on multiple model approach. This way, linear local models are obtained and then those models are combined by the proposed neurofuzzy structure. A metric that allows a satisfactory combination of those models is obtained after the structure training. It results on plant s global identification. A controller is projected for each local model. The global control is obtained by mixing local controllers signals. This is done by the modified ANFIS. The modification on ANFIS architecture allows the two neurofuzzy structures knowledge sharing. So the same metric obtained to combine models can be used to combine controllers. Two cases study are used to validate the new ANFIS structure. The knowledge sharing is evaluated in the second case study. It shows that just one modified ANFIS structure is necessary to combine linear models to identify, a nonlinear plant, and combine linear controllers to control this plant. The proposed method allows the usage of any identification and control techniques for local models and local controllers obtaining. It also reduces the complexity of ANFIS usage for identification and control. This work has prioritized simpler techniques for the identification and control systems to simplify the use of the method
Resumo:
The development of non-linear controllers gained space in the theoretical ambit and of practical applications on the moment that the arising of digital computers enabled the implementation of these methodologies. In comparison with the linear controllers more utilized, the non -linear controllers present the advantage of not requiring the linearity of the system to determine the parameters of control, which permits a more efficient control especially when the system presents a high level of non-linearity. Another additional advantage is the reduction of costs, since to obtain the efficient control through linear controllers it is necessary the utilization of sensors and more refined actuators than when it is utilized a non-linear controller. Among the non-linear theories of control, the method of control by gliding ways is detached for being a method that presents more robustness, before uncertainties. It is already confirmed that the adoption of compensation on the region of residual error permits to improve better the performance of these controllers. So, in this work it is described the development of a non-linear controller that looks for an association of strategy of control by gliding ways, with the fuzzy compensation technique. Through the implementation of some strategies of fuzzy compensation, it was searched the one which provided the biggest efficiency before a system with high level of nonlinearities and uncertainties. The electrohydraulic actuator was utilized as an example of research, and the results appoint to two configurations of compensation that permit a bigger reduction of the residual error
Resumo:
The separation methods are reduced applications as a result of the operational costs, the low output and the long time to separate the uids. But, these treatment methods are important because of the need for extraction of unwanted contaminants in the oil production. The water and the concentration of oil in water should be minimal (around 40 to 20 ppm) in order to take it to the sea. Because of the need of primary treatment, the objective of this project is to study and implement algorithms for identification of polynomial NARX (Nonlinear Auto-Regressive with Exogenous Input) models in closed loop, implement a structural identification, and compare strategies using PI control and updated on-line NARX predictive models on a combination of three-phase separator in series with three hydro cyclones batteries. The main goal of this project is to: obtain an optimized process of phase separation that will regulate the system, even in the presence of oil gushes; Show that it is possible to get optimized tunings for controllers analyzing the mesh as a whole, and evaluate and compare the strategies of PI and predictive control applied to the process. To accomplish these goals a simulator was used to represent the three phase separator and hydro cyclones. Algorithms were developed for system identification (NARX) using RLS(Recursive Least Square), along with methods for structure models detection. Predictive Control Algorithms were also implemented with NARX model updated on-line, and optimization algorithms using PSO (Particle Swarm Optimization). This project ends with a comparison of results obtained from the use of PI and predictive controllers (both with optimal state through the algorithm of cloud particles) in the simulated system. Thus, concluding that the performed optimizations make the system less sensitive to external perturbations and when optimized, the two controllers show similar results with the assessment of predictive control somewhat less sensitive to disturbances