6 resultados para Nonequilibrium Phase-transitions
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Water still represents, on its critical properties and phase transitions, a problem of current scientific interest, as a consequence of the countless open questions and of the inadequacy of the existent theoretical models, mainly related to the different solid and liquid phases that this substance possesses. For example, there are 13 known crystalline forms of water, and also amorphous phases. One of them, the amorphous ice of very high density (VHDA), was just recently observed. Other example is the anomalous behavior in the macroscopic density, which presents a maximum at the temperature of 277 K. In order to experimentally investigate the behavior of one of the liquid-solid phase transitions, the anomaly in its density and also the metastability, we used three different cooling techniques and, as comparison systems, we made use of the solvents: acetone and ethyl alcohol. The first studied cooling system employ a Peltier plate, a device recently developed, which makes use of small cubes made up of semiconductors to change heat among two surfaces; the second system is a commercial refrigerator, similar to the residential ones. Finally, the liquid nitrogen technique, which is used to refrigerate the samples in a container, in two ways: a very fast and other one, almost static. In those three systems, three Beckers of aluminum were used (with a volume of 80 ml, each), containing water, alcohol and acetone. They were closed and maintained at atmospheric pressure. Inside of each Becker were installed three thermocouples, disposed along the vertical axis of the Beckers, one close to the inferior surface, other to the medium level and the last one close the superior surface. A system of data acquisition was built via virtual instrumentation using as a central equipment a Data-Acquisition board. The temperature data were collected by the three thermocouples in the three Beckers, simultaneously, in function of freezing time. We will present the behavior of temperature versus freezing time for the three substances. The results show the characterization of the transitions of the liquid
Resumo:
In this work we study the phase transitions of the ferromagnetic three-color Ashkin-Teller Model in the hierarquical lattice generated by the Wheatstone bridge using real space renormalization group approach. With such technique we obtain the phase diagram and its critical points with respective critical exponents v. This model presents four phases: ferromagnetic, paramagnetic and two intermediates. Nine critical points were found, three of which are of Ising model type, three are of four states Potts model type, one is of eight states Potts model type and the last two which do not correspond to any Potts model with integer number of states. iv
Resumo:
The new technique for automatic search of the order parameters and critical properties is applied to several well-know physical systems, testing the efficiency of such a procedure, in order to apply it for complex systems in general. The automatic-search method is combined with Monte Carlo simulations, which makes use of a given dynamical rule for the time evolution of the system. In the problems inves¬tigated, the Metropolis and Glauber dynamics produced essentially equivalent results. We present a brief introduction to critical phenomena and phase transitions. We describe the automatic-search method and discuss some previous works, where the method has been applied successfully. We apply the method for the ferromagnetic fsing model, computing the critical fron¬tiers and the magnetization exponent (3 for several geometric lattices. We also apply the method for the site-diluted ferromagnetic Ising model on a square lattice, computing its critical frontier, as well as the magnetization exponent f3 and the susceptibility exponent 7. We verify that the universality class of the system remains unchanged when the site dilution is introduced. We study the problem of long-range bond percolation in a diluted linear chain and discuss the non-extensivity questions inherent to long-range-interaction systems. Finally we present our conclusions and possible extensions of this work
Resumo:
In this work we have studied the effects of random biquadratic and random fields in spin-glass models using the replica method. The effect of a random biquadratic coupling was studied in two spin-1 spin-glass models: in one case the interactions occur between pairs of spins, whereas in the second one the interactions occur between p spins and the limit p > oo is considered. Both couplings (spin glass and biquadratic) have zero-mean Gaussian probability distributions. In the first model, the replica-symmetric assumption reveals that the system presents two pha¬ses, namely, paramagnetic and spin-glass, separated by a continuous transition line. The stability analysis of the replica-symmetric solution yields, besides the usual instability associated with the spin-glass ordering, a new phase due to the random biquadratic cou¬plings between the spins. For the case p oo, the replica-symmetric assumption yields again only two phases, namely, paramagnetic and quadrupolar. In both these phases the spin-glass parameter is zero. Besides, it is shown that they are stable under the Almeida-Thouless stability analysis. One of them presents negative entropy at low temperatures. We developed one step of replica simmetry breaking and noticed that a new phase, the biquadratic glass phase, emerge. In this way we have obtained the correct phase diagram, with.three first-order transition lines. These lines merges in a common triple point. The effects of random fields were studied in the Sherrington-Kirkpatrick model consi¬dered in the presence of an external random magnetic field following a trimodal distribu¬tion {P{hi) = p+S(hi - h0) +Po${hi) +pS(hi + h0))- It is shown that the border of the ferromagnetic phase may present, for conveniently chosen values of p0 and hQ, first-order phase transitions, as well as tricritical points at finite temperatures. It is verified that the first-order phase transitions are directly related to the dilution in the fields: the extensions of these transitions are reduced for increasing values of po- In fact, the threshold value pg, above which all phase transitions are continuous, is calculated analytically. The stability analysis of the replica-symmetric solution is performed and the regions of validity of such a solution are identified
Resumo:
The aim of this work is to derive theWard Identity for the low energy effective theory of a fermionic system in the presence of a hyperbolic Fermi surface coupled with a U(1) gauge field in 2+1 dimensions. These identities are important because they establish requirements for the theory to be gauge invariant. We will see that the identity associated Ward Identity (WI) of the model is not preserved at 1-loop order. This feature signalizes the presence of a quantum anomaly. In other words, a classical symmetry is broken dynamically by quantum fluctuations. Furthermore, we are considering that the system is close to a Quantum Phase Transitions and in vicinity of a Quantum Critical Point the fermionic excitations near the Fermi surface, decay through a Landau damping mechanism. All this ingredients need to be take explicitly to account and this leads us to calculate the vertex corrections as well as self energies effects, which in this way lead to one particle propagators which have a non-trivial frequency dependence
Resumo:
Kerodon rupestris (rock cavy, mocó) is an endemic caviidae of Brazilian northeast that inhabits rocky places in the semi arid region. The aim of this study was to characterize the activity/rest rhythm of the rock cavy under 12:12 h LD cycle and continuous light. In the first stage, seven animals were submitted to two light intensities (LD; 250:0 lux and 400:0 lux; 40 days each intensity). In the second stage four males were kept for 40 days in LD (470:<1 lux), for 18 days in LL 470 lux (LL470) and for 23 days in red dim light below 1 lux (LL<1). In the third stage three males were initially kept in LD 12:12 h (450:<1 lux) and after that in LL with gradual increase in light intensity each 21 days (<1 lux LL<1; 10 lux-LL10; 160 lux LL160; 450 lux LL450). In the fourth stage it was analyzed the motor activity of 16 animals in the first 10 days in LD. Motor activity was continuously recorded by passive infrared movement sensors connected to a computer and totaled in 5 min bins. The activity showed circadian and ultradian rhythms and activity peaks at phase transitions. The activity and the rest occurred in the light as well as in the dark phase, with activity mean greater in the light phase for most of the animals. The light intensity influenced the activity/rest rhythm in the first three stages and in the first stage the activity in 400 lux increased in four animals and decreases in two. In the second stage, the tau for 3 animals in LL470 was greater than 24 h; in LL<1 it was greater than 24 h for one and lower for two. In the third stage the tau decreased with the light intensity increase for animal 8. During the first days in the experimental room, the animals did not synchronize to the LD cycle with activity and rest occurring in both phases. The results indicate that the activity/rest rhythm of Kerodon rupestris can be affected by light intensity and that the synchronization to the LD cycle results from entrainment as well as masking probably as a consequence of the action of two or more oscillators with low coupling strength