10 resultados para Multifractal Products, Multifractal Spectrum, Renyi Function, Stationary Diffusion

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this work we present the principal fractals, their caracteristics, properties abd their classification, comparing them to Euclidean Geometry Elements. We show the importance of the Fractal Geometry in the analysis of several elements of our society. We emphasize the importance of an appropriate definition of dimension to these objects, because the definition we presently know doesn t see a satisfactory one. As an instrument to obtain these dimentions we present the Method to count boxes, of Hausdorff- Besicovich and the Scale Method. We also study the Percolation Process in the square lattice, comparing it to percolation in the multifractal subject Qmf, where we observe som differences between these two process. We analize the histogram grafic of the percolating lattices versus the site occupation probability p, and other numerical simulations. And finaly, we show that we can estimate the fractal dimension of the percolation cluster and that the percolatin in a multifractal suport is in the same universality class as standard percolation. We observe that the area of the blocks of Qmf is variable, pc is a function of p which is related to the anisotropy of Qmf

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work we have studied the problem of percolation in a multifractal geometric support, in its different versions, and we have analysed the conection between this problem and the standard percolation and also the connection with the critical phenomena formalism. The projection of the multifractal structure into the subjacent regular lattice allows to map the problem of random percolation in the multifractal lattice into the problem of correlated percolation in the regular lattice. Also we have investigated the critical behavior of the invasion percolation model in this type of environment. We have discussed get the finite size effects

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Frequency Selective surfaces are increasingly common structures in telecommunication systems due to their geometric and electromagnetic advantages. As a matter of fact, the frequency selective surfaces with fractal geometry type would allow an even bigger reduction of the electrical length which provided greater flexibility in the design of these structures. In this work, we investigated the use of multifractal geometry in frequency selective surfaces. Three structures with different multifractal geometries have been proposed and analyzed. The first structure allowed the design of multiband structures with greater flexibility in controlling the resonant frequencies and bandwidth. The second structure provided a bandwidth increase even with the rising of the fractal level. The third structure showed response with angle stability, dual polarization and provided room for a bandwidth increase with the rising of the structural multifractality. Furthermore, the proposed structures increased the degree of freedom in the multiband designs because they have multiple resonant frequencies ratios between adjacent bands and are easy to deploy. The validation of the proposed structures was initially verified through simulations in Ansoft Designer software and then the structures were constructed and the experimental results obtained

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of wireless communication systems leads to Dynamic Spectrum Allocation for Cognitive Radio, which requires reliable spectrum sensing techniques. Among the spectrum sensing methods proposed in the literature, those that exploit cyclostationary characteristics of radio signals are particularly suitable for communication environments with low signal-to-noise ratios, or with non-stationary noise. However, such methods have high computational complexity that directly raises the power consumption of devices which often have very stringent low-power requirements. We propose a strategy for cyclostationary spectrum sensing with reduced energy consumption. This strategy is based on the principle that p processors working at slower frequencies consume less power than a single processor for the same execution time. We devise a strict relation between the energy savings and common parallel system metrics. The results of simulations show that our strategy promises very significant savings in actual devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complex behavior of a wide variety of phenomena that are of interest to physicists, chemists, and engineers has been quantitatively characterized by using the ideas of fractal and multifractal distributions, which correspond in a unique way to the geometrical shape and dynamical properties of the systems under study. In this thesis we present the Space of Fractals and the methods of Hausdorff-Besicovitch, box-counting and Scaling to calculate the fractal dimension of a set. In this Thesis we investigate also percolation phenomena in multifractal objects that are built in a simple way. The central object of our analysis is a multifractal object that we call Qmf . In these objects the multifractality comes directly from the geometric tiling. We identify some differences between percolation in the proposed multifractals and in a regular lattice. There are basically two sources of these differences. The first is related to the coordination number, c, which changes along the multifractal. The second comes from the way the weight of each cell in the multifractal affects the percolation cluster. We use many samples of finite size lattices and draw the histogram of percolating lattices against site occupation probability p. Depending on a parameter, ρ, characterizing the multifractal and the lattice size, L, the histogram can have two peaks. We observe that the probability of occupation at the percolation threshold, pc, for the multifractal is lower than that for the square lattice. We compute the fractal dimension of the percolating cluster and the critical exponent β. Despite the topological differences, we find that the percolation in a multifractal support is in the same universality class as standard percolation. The area and the number of neighbors of the blocks of Qmf show a non-trivial behavior. A general view of the object Qmf shows an anisotropy. The value of pc is a function of ρ which is related to its anisotropy. We investigate the relation between pc and the average number of neighbors of the blocks as well as the anisotropy of Qmf. In this Thesis we study likewise the distribution of shortest paths in percolation systems at the percolation threshold in two dimensions (2D). We study paths from one given point to multiple other points

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complex behavior of a wide variety of phenomena that are of interest to physicists, chemists, and engineers has been quantitatively characterized by using the ideas of fractal and multifractal distributions, which correspond in a unique way to the geometrical shape and dynamical properties of the systems under study. In this thesis we present the Space of Fractals and the methods of Hausdorff-Besicovitch, box-counting and Scaling to calculate the fractal dimension of a set. In this Thesis we investigate also percolation phenomena in multifractal objects that are built in a simple way. The central object of our analysis is a multifractal object that we call Qmf . In these objects the multifractality comes directly from the geometric tiling. We identify some differences between percolation in the proposed multifractals and in a regular lattice. There are basically two sources of these differences. The first is related to the coordination number, c, which changes along the multifractal. The second comes from the way the weight of each cell in the multifractal affects the percolation cluster. We use many samples of finite size lattices and draw the histogram of percolating lattices against site occupation probability p. Depending on a parameter, ρ, characterizing the multifractal and the lattice size, L, the histogram can have two peaks. We observe that the probability of occupation at the percolation threshold, pc, for the multifractal is lower than that for the square lattice. We compute the fractal dimension of the percolating cluster and the critical exponent β. Despite the topological differences, we find that the percolation in a multifractal support is in the same universality class as standard percolation. The area and the number of neighbors of the blocks of Qmf show a non-trivial behavior. A general view of the object Qmf shows an anisotropy. The value of pc is a function of ρ which is related to its anisotropy. We investigate the relation between pc and the average number of neighbors of the blocks as well as the anisotropy of Qmf. In this Thesis we study likewise the distribution of shortest paths in percolation systems at the percolation threshold in two dimensions (2D). We study paths from one given point to multiple other points. In oil recovery terminology, the given single point can be mapped to an injection well (injector) and the multiple other points to production wells (producers). In the previously standard case of one injection well and one production well separated by Euclidean distance r, the distribution of shortest paths l, P(l|r), shows a power-law behavior with exponent gl = 2.14 in 2D. Here we analyze the situation of one injector and an array A of producers. Symmetric arrays of producers lead to one peak in the distribution P(l|A), the probability that the shortest path between the injector and any of the producers is l, while the asymmetric configurations lead to several peaks in the distribution. We analyze configurations in which the injector is outside and inside the set of producers. The peak in P(l|A) for the symmetric arrays decays faster than for the standard case. For very long paths all the studied arrays exhibit a power-law behavior with exponent g ∼= gl.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the structures of LaCoO3, La0,8Ba0,2CoO3 and La0,8Ca0,2CoO3 perovskites were characterized as a function of temperature (LaCoO3 structure being analyzed only at room temperature). The characterization of these materials were made by X-Ray Absorption Spectroscopy (XAS), in the cobalt K-edge, taking into account the correlated Einstein model X-ray absorption fine structure (EXAFS). The first part of the absorption spectrum corresponded the X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). These materials were prepared by the combustion method. The combustion products were calcinated at 900 0C, for 6 hours in air. Noted that the sample LaCoO3 at room temperature and samples doped with Calcium and Barium in the temperature range of 50 K to 298 K showed greater distortion to monoclinic symmetry with space group I2/a. However, the sample doped with barium at the temperatures 50 K, 220 K, and 260 K showed a slight distortion to rhombohedral symmetry with space group R-3c. The La0,8Ca0, 2CoO3 structure was few sensitive to temperature variation, showing a higher local distortion in the octahedron and a higher local thermal disorder. These interpretations were in agreement with the information electronic structural on the XANES region and geometric in the EXAFS region

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the study of some complex systems is done with use of two distinct procedures. In the first part, we have studied the usage of Wavelet transform on analysis and characterization of (multi)fractal time series. We have test the reliability of Wavelet Transform Modulus Maxima method (WTMM) in respect to the multifractal formalism, trough the calculation of the singularity spectrum of time series whose fractality is well known a priori. Next, we have use the Wavelet Transform Modulus Maxima method to study the fractality of lungs crackles sounds, a biological time series. Since the crackles sounds are due to the opening of a pulmonary airway bronchi, bronchioles and alveoli which was initially closed, we can get information on the phenomenon of the airway opening cascade of the whole lung. Once this phenomenon is associated with the pulmonar tree architecture, which displays fractal geometry, the analysis and fractal characterization of this noise may provide us with important parameters for comparison between healthy lungs and those affected by disorders that affect the geometry of the tree lung, such as the obstructive and parenchymal degenerative diseases, which occurs, for example, in pulmonary emphysema. In the second part, we study a site percolation model for square lattices, where the percolating cluster grows governed by a control rule, corresponding to a method of automatic search. In this model of percolation, which have characteristics of self-organized criticality, the method does not use the automated search on Leaths algorithm. It uses the following control rule: pt+1 = pt + k(Rc − Rt), where p is the probability of percolation, k is a kinetic parameter where 0 < k < 1 and R is the fraction of percolating finite square lattices with side L, LxL. This rule provides a time series corresponding to the dynamical evolution of the system, in particular the likelihood of percolation p. We proceed an analysis of scaling of the signal obtained in this way. The model used here enables the study of the automatic search method used for site percolation in square lattices, evaluating the dynamics of their parameters when the system goes to the critical point. It shows that the scaling of , the time elapsed until the system reaches the critical point, and tcor, the time required for the system loses its correlations, are both inversely proportional to k, the kinetic parameter of the control rule. We verify yet that the system has two different time scales after: one in which the system shows noise of type 1 f , indicating to be strongly correlated. Another in which it shows white noise, indicating that the correlation is lost. For large intervals of time the dynamics of the system shows ergodicity

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of the elementary excitations such as photons, phonons, plasmons, polaritons, polarons, excitons and magnons, in crystalline solids and nanostructures systems are nowdays important active field for research works in solid state physics as well as in statistical physics. With this aim in mind, this work has two distinct parts. In the first one, we investigate the propagation of excitons polaritons in nanostructured periodic and quasiperiodic multilayers, from the description of the behavior for bulk and surface modes in their individual constituents. Through analytical, as well as computational numerical calculation, we obtain the spectra for both surface and bulk exciton-polaritons modes in the superstructures. Besides, we investigate also how the quasiperiodicity modifies the band structure related to the periodic case, stressing their amazing self-similar behavior leaving to their fractal/multifractal aspects. Afterwards, we present our results related to the so-called photonic crystals, the eletromagnetic analogue of the electronic crystalline structure. We consider periodic and quasiperiodic structures, in which one of their component presents a negative refractive index. This unusual optic characteristic is obtained when the electric permissivity and the magnetic permeability µ are both negatives for the same range of angular frequency ω of the incident wave. The given curves show how the transmission of the photon waves is modified, with a striking self-similar profile. Moreover, we analyze the modification of the usual Planck´s thermal spectrum when we use a quasiperiodic fotonic superlattice as a filter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of wireless communication systems leads to Dynamic Spectrum Allocation for Cognitive Radio, which requires reliable spectrum sensing techniques. Among the spectrum sensing methods proposed in the literature, those that exploit cyclostationary characteristics of radio signals are particularly suitable for communication environments with low signal-to-noise ratios, or with non-stationary noise. However, such methods have high computational complexity that directly raises the power consumption of devices which often have very stringent low-power requirements. We propose a strategy for cyclostationary spectrum sensing with reduced energy consumption. This strategy is based on the principle that p processors working at slower frequencies consume less power than a single processor for the same execution time. We devise a strict relation between the energy savings and common parallel system metrics. The results of simulations show that our strategy promises very significant savings in actual devices.