16 resultados para Multi-extremal Objective Function

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The usual programs for load flow calculation were in general developped aiming the simulation of electric energy transmission, subtransmission and distribution systems. However, the mathematical methods and algorithms used by the formulations were based, in majority, just on the characteristics of the transmittion systems, which were the main concern focus of engineers and researchers. Though, the physical characteristics of these systems are quite different from the distribution ones. In the transmission systems, the voltage levels are high and the lines are generally very long. These aspects contribute the capacitive and inductive effects that appear in the system to have a considerable influence in the values of the interest quantities, reason why they should be taken into consideration. Still in the transmission systems, the loads have a macro nature, as for example, cities, neiborhoods, or big industries. These loads are, generally, practically balanced, what reduces the necessity of utilization of three-phase methodology for the load flow calculation. Distribution systems, on the other hand, present different characteristics: the voltage levels are small in comparison to the transmission ones. This almost annul the capacitive effects of the lines. The loads are, in this case, transformers, in whose secondaries are connected small consumers, in a sort of times, mono-phase ones, so that the probability of finding an unbalanced circuit is high. This way, the utilization of three-phase methodologies assumes an important dimension. Besides, equipments like voltage regulators, that use simultaneously the concepts of phase and line voltage in their functioning, need a three-phase methodology, in order to allow the simulation of their real behavior. For the exposed reasons, initially was developped, in the scope of this work, a method for three-phase load flow calculation in order to simulate the steady-state behaviour of distribution systems. Aiming to achieve this goal, the Power Summation Algorithm was used, as a base for developing the three phase method. This algorithm was already widely tested and approved by researchers and engineers in the simulation of radial electric energy distribution systems, mainly for single-phase representation. By our formulation, lines are modeled in three-phase circuits, considering the magnetic coupling between the phases; but the earth effect is considered through the Carson reduction. It s important to point out that, in spite of the loads being normally connected to the transformer s secondaries, was considered the hypothesis of existence of star or delta loads connected to the primary circuit. To perform the simulation of voltage regulators, a new model was utilized, allowing the simulation of various types of configurations, according to their real functioning. Finally, was considered the possibility of representation of switches with current measuring in various points of the feeder. The loads are adjusted during the iteractive process, in order to match the current in each switch, converging to the measured value specified by the input data. In a second stage of the work, sensibility parameters were derived taking as base the described load flow, with the objective of suporting further optimization processes. This parameters are found by calculating of the partial derivatives of a variable in respect to another, in general, voltages, losses and reactive powers. After describing the calculation of the sensibility parameters, the Gradient Method was presented, using these parameters to optimize an objective function, that will be defined for each type of study. The first one refers to the reduction of technical losses in a medium voltage feeder, through the installation of capacitor banks; the second one refers to the problem of correction of voltage profile, through the instalation of capacitor banks or voltage regulators. In case of the losses reduction will be considered, as objective function, the sum of the losses in all the parts of the system. To the correction of the voltage profile, the objective function will be the sum of the square voltage deviations in each node, in respect to the rated voltage. In the end of the work, results of application of the described methods in some feeders are presented, aiming to give insight about their performance and acuity

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The usual programs for load flow calculation were in general developped aiming the simulation of electric energy transmission, subtransmission and distribution systems. However, the mathematical methods and algorithms used by the formulations were based, in majority, just on the characteristics of the transmittion systems, which were the main concern focus of engineers and researchers. Though, the physical characteristics of these systems are quite different from the distribution ones. In the transmission systems, the voltage levels are high and the lines are generally very long. These aspects contribute the capacitive and inductive effects that appear in the system to have a considerable influence in the values of the interest quantities, reason why they should be taken into consideration. Still in the transmission systems, the loads have a macro nature, as for example, cities, neiborhoods, or big industries. These loads are, generally, practically balanced, what reduces the necessity of utilization of three-phase methodology for the load flow calculation. Distribution systems, on the other hand, present different characteristics: the voltage levels are small in comparison to the transmission ones. This almost annul the capacitive effects of the lines. The loads are, in this case, transformers, in whose secondaries are connected small consumers, in a sort of times, mono-phase ones, so that the probability of finding an unbalanced circuit is high. This way, the utilization of three-phase methodologies assumes an important dimension. Besides, equipments like voltage regulators, that use simultaneously the concepts of phase and line voltage in their functioning, need a three-phase methodology, in order to allow the simulation of their real behavior. For the exposed reasons, initially was developped, in the scope of this work, a method for three-phase load flow calculation in order to simulate the steady-state behaviour of distribution systems. Aiming to achieve this goal, the Power Summation Algorithm was used, as a base for developping the three phase method. This algorithm was already widely tested and approved by researchers and engineers in the simulation of radial electric energy distribution systems, mainly for single-phase representation. By our formulation, lines are modeled in three-phase circuits, considering the magnetic coupling between the phases; but the earth effect is considered through the Carson reduction. Its important to point out that, in spite of the loads being normally connected to the transformers secondaries, was considered the hypothesis of existence of star or delta loads connected to the primary circuit. To perform the simulation of voltage regulators, a new model was utilized, allowing the simulation of various types of configurations, according to their real functioning. Finally, was considered the possibility of representation of switches with current measuring in various points of the feeder. The loads are adjusted during the iteractive process, in order to match the current in each switch, converging to the measured value specified by the input data. In a second stage of the work, sensibility parameters were derived taking as base the described load flow, with the objective of suporting further optimization processes. This parameters are found by calculating of the partial derivatives of a variable in respect to another, in general, voltages, losses and reactive powers. After describing the calculation of the sensibility parameters, the Gradient Method was presented, using these parameters to optimize an objective function, that will be defined for each type of study. The first one refers to the reduction of technical losses in a medium voltage feeder, through the installation of capacitor banks; the second one refers to the problem of correction of voltage profile, through the instalation of capacitor banks or voltage regulators. In case of the losses reduction will be considered, as objective function, the sum of the losses in all the parts of the system. To the correction of the voltage profile, the objective function will be the sum of the square voltage deviations in each node, in respect to the rated voltage. In the end of the work, results of application of the described methods in some feeders are presented, aiming to give insight about their performance and acuity

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work deals with an on-line control strategy based on Robust Model Predictive Control (RMPC) technique applied in a real coupled tanks system. This process consists of two coupled tanks and a pump to feed the liquid to the system. The control objective (regulator problem) is to keep the tanks levels in the considered operation point even in the presence of disturbance. The RMPC is a technique that allows explicit incorporation of the plant uncertainty in the problem formulation. The goal is to design, at each time step, a state-feedback control law that minimizes a 'worst-case' infinite horizon objective function, subject to constraint in the control. The existence of a feedback control law satisfying the input constraints is reduced to a convex optimization over linear matrix inequalities (LMIs) problem. It is shown in this work that for the plant uncertainty described by the polytope, the feasible receding horizon state feedback control design is robustly stabilizing. The software implementation of the RMPC is made using Scilab, and its communication with Coupled Tanks Systems is done through the OLE for Process Control (OPC) industrial protocol

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work shows a study about the Generalized Predictive Controllers with Restrictions and their implementation in physical plants. Three types of restrictions will be discussed: restrictions in the variation rate of the signal control, restrictions in the amplitude of the signal control and restrictions in the amplitude of the Out signal (plant response). At the predictive control, the control law is obtained by the minimization of an objective function. To consider the restrictions, this minimization of the objective function is done by the use of a method to solve optimizing problems with restrictions. The chosen method was the Rosen Algorithm (based on the Gradient-projection). The physical plants in this study are two didactical systems of water level control. The first order one (a simple tank) and another of second order, which is formed by two tanks connected in cascade. The codes are implemented in C++ language and the communication with the system to be done through using a data acquisition panel offered by the system producer

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work performs an algorithmic study of optimization of a conformal radiotherapy plan treatment. Initially we show: an overview about cancer, radiotherapy and the physics of interaction of ionizing radiation with matery. A proposal for optimization of a plan of treatment in radiotherapy is developed in a systematic way. We show the paradigm of multicriteria problem, the concept of Pareto optimum and Pareto dominance. A generic optimization model for radioterapic treatment is proposed. We construct the input of the model, estimate the dose given by the radiation using the dose matrix, and show the objective function for the model. The complexity of optimization models in radiotherapy treatment is typically NP which justifyis the use of heuristic methods. We propose three distinct methods: MOGA, MOSA e MOTS. The project of these three metaheuristic procedures is shown. For each procedures follows: a brief motivation, the algorithm itself and the method for tuning its parameters. The three method are applied to a concrete case and we confront their performances. Finally it is analyzed for each method: the quality of the Pareto sets, some solutions and the respective Pareto curves

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonogram is a logical puzzle whose associated decision problem is NP-complete. It has applications in pattern recognition problems and data compression, among others. The puzzle consists in determining an assignment of colors to pixels distributed in a N  M matrix that satisfies line and column constraints. A Nonogram is encoded by a vector whose elements specify the number of pixels in each row and column of a figure without specifying their coordinates. This work presents exact and heuristic approaches to solve Nonograms. The depth first search was one of the chosen exact approaches because it is a typical example of brute search algorithm that is easy to implement. Another implemented exact approach was based on the Las Vegas algorithm, so that we intend to investigate whether the randomness introduce by the Las Vegas-based algorithm would be an advantage over the depth first search. The Nonogram is also transformed into a Constraint Satisfaction Problem. Three heuristics approaches are proposed: a Tabu Search and two memetic algorithms. A new function to calculate the objective function is proposed. The approaches are applied on 234 instances, the size of the instances ranging from 5 x 5 to 100 x 100 size, and including logical and random Nonograms

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The history match procedure in an oil reservoir is of paramount importance in order to obtain a characterization of the reservoir parameters (statics and dynamics) that implicates in a predict production more perfected. Throughout this process one can find reservoir model parameters which are able to reproduce the behaviour of a real reservoir.Thus, this reservoir model may be used to predict production and can aid the oil file management. During the history match procedure the reservoir model parameters are modified and for every new set of reservoir model parameters found, a fluid flow simulation is performed so that it is possible to evaluate weather or not this new set of parameters reproduces the observations in the actual reservoir. The reservoir is said to be matched when the discrepancies between the model predictions and the observations of the real reservoir are below a certain tolerance. The determination of the model parameters via history matching requires the minimisation of an objective function (difference between the observed and simulated productions according to a chosen norm) in a parameter space populated by many local minima. In other words, more than one set of reservoir model parameters fits the observation. With respect to the non-uniqueness of the solution, the inverse problem associated to history match is ill-posed. In order to reduce this ambiguity, it is necessary to incorporate a priori information and constraints in the model reservoir parameters to be determined. In this dissertation, the regularization of the inverse problem associated to the history match was performed via the introduction of a smoothness constraint in the following parameter: permeability and porosity. This constraint has geological bias of asserting that these two properties smoothly vary in space. In this sense, it is necessary to find the right relative weight of this constrain in the objective function that stabilizes the inversion and yet, introduces minimum bias. A sequential search method called COMPLEX was used to find the reservoir model parameters that best reproduce the observations of a semi-synthetic model. This method does not require the usage of derivatives when searching for the minimum of the objective function. Here, it is shown that the judicious introduction of the smoothness constraint in the objective function formulation reduces the associated ambiguity and introduces minimum bias in the estimates of permeability and porosity of the semi-synthetic reservoir model

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gravity inversion method is a mathematic process that can be used to estimate the basement relief of a sedimentary basin. However, the inverse problem in potential-field methods has neither a unique nor a stable solution, so additional information (other than gravity measurements) must be supplied by the interpreter to transform this problem into a well-posed one. This dissertation presents the application of a gravity inversion method to estimate the basement relief of the onshore Potiguar Basin. The density contrast between sediments and basament is assumed to be known and constant. The proposed methodology consists of discretizing the sedimentary layer into a grid of rectangular juxtaposed prisms whose thicknesses correspond to the depth to basement which is the parameter to be estimated. To stabilize the inversion I introduce constraints in accordance with the known geologic information. The method minimizes an objective function of the model that requires not only the model to be smooth and close to the seismic-derived model, which is used as a reference model, but also to honor well-log constraints. The latter are introduced through the use of logarithmic barrier terms in the objective function. The inversion process was applied in order to simulate different phases during the exploration development of a basin. The methodology consisted in applying the gravity inversion in distinct scenarios: the first one used only gravity data and a plain reference model; the second scenario was divided in two cases, we incorporated either borehole logs information or seismic model into the process. Finally I incorporated the basement depth generated by seismic interpretation into the inversion as a reference model and imposed depth constraint from boreholes using the primal logarithmic barrier method. As a result, the estimation of the basement relief in every scenario has satisfactorily reproduced the basin framework, and the incorporation of the constraints led to improve depth basement definition. The joint use of surface gravity data, seismic imaging and borehole logging information makes the process more robust and allows an improvement in the estimate, providing a result closer to the actual basement relief. In addition, I would like to remark that the result obtained in the first scenario already has provided a very coherent basement relief when compared to the known basin framework. This is significant information, when comparing the differences in the costs and environment impact related to gravimetric and seismic surveys and also the well drillings

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a new model for the Heterogeneous p-median Problem (HPM), proposed to recover the hidden category structures present in the data provided by a sorting task procedure, a popular approach to understand heterogeneous individual’s perception of products and brands. This new model is named as the Penalty-free Heterogeneous p-median Problem (PFHPM), a single-objective version of the original problem, the HPM. The main parameter in the HPM is also eliminated, the penalty factor. It is responsible for the weighting of the objective function terms. The adjusting of this parameter controls the way that the model recovers the hidden category structures present in data, and depends on a broad knowledge of the problem. Additionally, two complementary formulations for the PFHPM are shown, both mixed integer linear programming problems. From these additional formulations lower-bounds were obtained for the PFHPM. These values were used to validate a specialized Variable Neighborhood Search (VNS) algorithm, proposed to solve the PFHPM. This algorithm provided good quality solutions for the PFHPM, solving artificial generated instances from a Monte Carlo Simulation and real data instances, even with limited computational resources. Statistical analyses presented in this work suggest that the new algorithm and model, the PFHPM, can recover more accurately the original category structures related to heterogeneous individual’s perceptions than the original model and algorithm, the HPM. Finally, an illustrative application of the PFHPM is presented, as well as some insights about some new possibilities for it, extending the new model to fuzzy environments

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modern industrial progress has been contaminating water with phenolic compounds. These are toxic and carcinogenic substances and it is essential to reduce its concentration in water to a tolerable one, determined by CONAMA, in order to protect the living organisms. In this context, this work focuses on the treatment and characterization of catalysts derived from the bio-coal, by-product of biomass pyrolysis (avelós and wood dust) as well as its evaluation in the phenol photocatalytic degradation reaction. Assays were carried out in a slurry bed reactor, which enables instantaneous measurements of temperature, pH and dissolved oxygen. The experiments were performed in the following operating conditions: temperature of 50 °C, oxygen flow equals to 410 mL min-1 , volume of reagent solution equals to 3.2 L, 400 W UV lamp, at 1 atm pressure, with a 2 hours run. The parameters evaluated were the pH (3.0, 6.9 and 10.7), initial concentration of commercial phenol (250, 500 and 1000 ppm), catalyst concentration (0, 1, 2, and 3 g L-1 ), nature of the catalyst (activated avelós carbon washed with dichloromethane, CAADCM, and CMADCM, activated dust wood carbon washed with dichloromethane). The results of XRF, XRD and BET confirmed the presence of iron and potassium in satisfactory amounts to the CAADCM catalyst and on a reduced amount to CMADCM catalyst, and also the surface area increase of the materials after a chemical and physical activation. The phenol degradation curves indicate that pH has a significant effect on the phenol conversion, showing better results for lowers pH. The optimum concentration of catalyst is observed equals to 1 g L-1 , and the increase of the initial phenol concentration exerts a negative influence in the reaction execution. It was also observed positive effect of the presence of iron and potassium in the catalyst structure: betters conversions were observed for tests conducted with the catalyst CAADCM compared to CMADCM catalyst under the same conditions. The higher conversion was achieved for the test carried out at acid pH (3.0) with an initial concentration of phenol at 250 ppm catalyst in the presence of CAADCM at 1 g L-1 . The liquid samples taken every 15 minutes were analyzed by liquid chromatography identifying and quantifying hydroquinone, p-benzoquinone, catechol and maleic acid. Finally, a reaction mechanism is proposed, cogitating the phenol is transformed into the homogeneous phase and the others react on the catalyst surface. Applying the model of Langmuir-Hinshelwood along with a mass balance it was obtained a system of differential equations that were solved using the Runge-Kutta 4th order method associated with a optimization routine called SWARM (particle swarm) aiming to minimize the least square objective function for obtaining the kinetic and adsorption parameters. Related to the kinetic rate constant, it was obtained a magnitude of 10-3 for the phenol degradation, 10-4 to 10-2 for forming the acids, 10-6 to 10-9 for the mineralization of quinones (hydroquinone, p-benzoquinone and catechol), 10-3 to 10-2 for the mineralization of acids.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Postsurgical complication of hypertension may occur in cardiac patients. To decrease the chances of complication it is necessary to reduce elevated blood pressure as soon as possible. Continuous infusion of vasodilator drugs, such as sodium nitroprusside (Nipride), would quickly lower the blood pressure in most patients. However, each patient has a different sensitivity to infusion of Nipride. The parameters and the time delays of the system are initially unknown. Moreover, the parameters of the transfer function associated with a particular patient are time varying. the objective of the study is to develop a procedure for blood pressure control i the presence of uncertainty of parameters and considerable time delays. So, a methodology was developed multi-model, and for each such model a Preditive Controller can be a priori designed. An adaptive mechanism is then needed for deciding which controller should be dominant for a given plant

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The identification of the factors that interfere in the decline of functional conditions is useful in the planning of actions addressing the improvement in the conditions of the lives of elderly people. The purpose of this investigation was to analyze the relationship between social demographics and health aspects of the functional condition in elderly women of low income of the Brazilian northeast. This crosssectional study involved a representative sample of 222 women with an average age of 70 years (± 7.1), belonging to coexisting groups and that were resident in the urban area of the municipal district of Jequié /Bahia. In order to achieve this objective, a battery of physical tests of functional aptitude was carried out previously tested in pilot study, anthropometric measurements collected with a comparison of the measures referred to the reported weight and height as well as the application of an interview with questions containing subjects related to social demographic variables, clinical conditions and health, physical conditions and behaviors. Descriptive statistics Proceedings (frequency, average, standard deviation and percent distribution) were used for statistic analysis, and the calculation of the respective odds ratio by binary logistics regression, for the analysis of factors hierarchically grouped; p<0.05. The prevalence of 56% (n=122) of women considered with moderated or serious type of functional limitations was found, In which from multi-varied hierarchical analysis, significant association was verified with the age group over 80 years (p=0.02), conditions of widowhood (p=0.04), presence of arterial hypertension (p=0.001), and physical inactivity during leisure time (p=0.03). On the other hand for functional incapacities the prevalence was of 46.8% (n=104) being associated to the increase of the age (p=0.01), hospitalization (p=0.02), absence of physical activities along their lives (p=0.001) and the occurrence of alterations in the cognitive function (p=0.001). The normative table for the parameters of physical fitness generated conducive to health professionals in the diagnosis of health conditions and the prescription of physical exercises. The identified characteristics that are associated with the functional limitations / functional incapacities suggest a complex causal net in the determination of the functional condition in elderly women. However, actions addressed to the incentive of the practice of physical activities in the leisure time and the preservation of the cognitive function can contribute to a life with more quality for these people. This research was multidisciplinary approach to involve elements of psychology, nutrition and Physical Education in the elucidation of the object of study related to the functional condition of elderly women

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research aims at studying the formation of internal consultants in organizational setting in the joint resolution of problems, around the conversion of knowledge. The objective of research is to understand and explain the meanings attributed by Petrobras internal consultants to their practice and training for the conversion process of tacit knowledge into explicit, around the joint resolution of their problems with their collaborators. It has directed the next question: what the meanings assigned by the consultants of Unidade de Negócios Rio Grande do Norte e Ceara (UN-RNCE) in Knowledge Management (KM), for their interventionist and formative practices in problem solving, as well as conversion of tacit knowledge in explicit? This paper has assumed that there is a dual logic integrated into its daily practices: solving troubles and converting knowledge. The thesis has considered the daily practices of these consultants are characterized as epistemic spaces and permanent education through the conversion of knowledge. It has adopted the principles of multi-referential approach as foundations, regarding the translation of a variety of angles, perspectives and prospects which allow the interpretation and understanding of complex issues that are part of conversion of knowledge. The understanding and explanation of the senses are based on the methodology of the comprehensive interview; taking ownership is the sensitive listening for comprehensive interpretation of oral discourses of ten consultants, in addition to the autoscopy that putting into practice, thus, the stance of the researcher as an intellectual craftsman. Furthermore, it has assessed that the limits and possibilities for training and learning in the conversion of knowledge arise, on one hand from a predominantly driven training culture by the paradigm of technical rationality and one the other hand, from a set of relationship to knowledge and relation to know , revealed in the search for training in other dimensions. There are tensions between the local and global demands located in a situation marked by a systemic organization of knowledge. However, the context is perceived by researchers as impregnated by the discontinuity, unpredictability and uncertainty; mobilizing a number of elements necessary for the mediation in training practices of these consultants. Finally, it has set an instrumental and technological support, restricting the formation and undermining the position of the consultancy as nuclear function in Knowledge Management

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the globalized world modern telecommunications have assumed key role within the company, causing a large increase in demand for the wireless technology of communication, which has been happening in recent years have greatly increased the number of applications using this technology. Due to this demand, new materials are developed to enable new control mechanisms and propagation of electromagnetic waves. The research to develop new technologies for wireless communication presents a multidisciplinary study that covers from the new geometries for passive antennas, active up to the development of materials for devices that improve the performance at the frequency range of operation. Recently, planar antennas have attracted interest due to their characteristics and advantages when compared with other types of antennas. In the area of mobile communications the need for antennas of this type has become increasingly used, due to intensive development, which needs to operate in multifrequency antennas and broadband. The microstrip antennas have narrow bandwidth due to the dielectric losses generated by irradiation. Another limitation is the degradation of the radiation pattern due to the generation of surface waves in the substrate. Some techniques have been developed to minimize this limitation of bandwidth, such as the study of type materials PBG - Photonic Band Gap, to form the dielectric material. This work has as main objective the development project of a slot resonator with multiple layers and use the type PBG substrate, which carried out the optimization from the numerical analysis and then designed the device initially proposed for the band electromagnetic spectrum between 3-9 GHz, which basically includes the band S to X. Was used as the dielectric material RT/Duroid 5870 and RT/Duroid 6010.LM where both are laminated ceramic-filled PTFE dielectric constants 2.33 and 10.2, respectively. Through an experimental investigation was conducted an analysis of the simulated versus measured by observing the behavior of the radiation characteristics from the height variation of the dielectric multilayer substrates. We also used the LTT method resonators structures rectangular slot with multiple layers of material photonic PBG in order to obtain the resonance frequency and the entire theory involving the electromagnetic parameters of the structure under consideration. xviii The analysis developed in this work was performed using the method LTT - Transverse Transmission Line, in the field of Fourier transform that uses a component propagating in the y direction (transverse to the real direction of propagation z), thus treating the general equations of the fields electric and magnetic and function. The PBG theory is applied to obtain the relative permittivity of the polarizations for the sep photonic composite substrates material. The results are obtained with the commercial software Ansoft HFSS, used for accurate analysis of the electromagnetic behavior of the planar device under study through the Finite Element Method (FEM). Numerical computational results are presented in graphical form in two and three dimensions, playing in the parameters of return loss, frequency of radiation and radiation diagram, radiation efficiency and surface current for the device under study, and have as substrates, photonic materials and had been simulated in an appropriate computational tool. With respect to the planar device design study are presented in the simulated and measured results that show good agreement with measurements made. These results are mainly in the identification of resonance modes and determining the characteristics of the designed device, such as resonant frequency, return loss and radiation pattern

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an evaluative study about the effects of using a machine learning technique on the main features of a self-organizing and multiobjective genetic algorithm (GA). A typical GA can be seen as a search technique which is usually applied in problems involving no polynomial complexity. Originally, these algorithms were designed to create methods that seek acceptable solutions to problems where the global optimum is inaccessible or difficult to obtain. At first, the GAs considered only one evaluation function and a single objective optimization. Today, however, implementations that consider several optimization objectives simultaneously (multiobjective algorithms) are common, besides allowing the change of many components of the algorithm dynamically (self-organizing algorithms). At the same time, they are also common combinations of GAs with machine learning techniques to improve some of its characteristics of performance and use. In this work, a GA with a machine learning technique was analyzed and applied in a antenna design. We used a variant of bicubic interpolation technique, called 2D Spline, as machine learning technique to estimate the behavior of a dynamic fitness function, based on the knowledge obtained from a set of laboratory experiments. This fitness function is also called evaluation function and, it is responsible for determining the fitness degree of a candidate solution (individual), in relation to others in the same population. The algorithm can be applied in many areas, including in the field of telecommunications, as projects of antennas and frequency selective surfaces. In this particular work, the presented algorithm was developed to optimize the design of a microstrip antenna, usually used in wireless communication systems for application in Ultra-Wideband (UWB). The algorithm allowed the optimization of two variables of geometry antenna - the length (Ls) and width (Ws) a slit in the ground plane with respect to three objectives: radiated signal bandwidth, return loss and central frequency deviation. These two dimensions (Ws and Ls) are used as variables in three different interpolation functions, one Spline for each optimization objective, to compose a multiobjective and aggregate fitness function. The final result proposed by the algorithm was compared with the simulation program result and the measured result of a physical prototype of the antenna built in the laboratory. In the present study, the algorithm was analyzed with respect to their success degree in relation to four important characteristics of a self-organizing multiobjective GA: performance, flexibility, scalability and accuracy. At the end of the study, it was observed a time increase in algorithm execution in comparison to a common GA, due to the time required for the machine learning process. On the plus side, we notice a sensitive gain with respect to flexibility and accuracy of results, and a prosperous path that indicates directions to the algorithm to allow the optimization problems with "η" variables