73 resultados para Ligas de zinco
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The cobalt-chromium alloy is extensively used in the Odontology for the confection of metallic scaffolding in partial removable denture. During the last few years, it has been reported an increasing number of premature imperfections, with a few months of prosthesis use. The manufacture of these components is made in prosthetic laboratories and normally involves recasting, using parts of casting alloy and parts of virgin alloy. Therefore, the objective of the present study was to analyze the mechanical properties of a commercial cobalt-chromium alloy of odontological use after successive recasting, searching information to guide the dental prosthesis laboratories in the correct manipulation of the cobalt-chromium alloy in the process of casting and the possible limits of recasting in the mechanical properties of this material. Seven sample groups were confectioned, each one containing five test bodies, divided in the following way: G1: casting only with virgin alloy; G2: casting with 50% of the alloy of the G1 + 50% of virgin alloy; G3: casting with 50% of the alloy of the G2 + 50% of virgin alloy; G4: casting with 50% of the alloy of the G3 + 50% of virgin alloy; G5: 50% of alloy of the G4 + 50% of virgin alloy; G6: 50% of alloy of the G5 + 50% of virgin alloy and finally the G7, only with recasting alloy. The modifications in the mechanical behavior of the alloy were evaluated. Moreover, it was carried the micro structural characterization of the material by optic and electronic scanning microscopy, and X ray diffraction.and fluorescence looking into the correlatation of the mechanical alterations with structural modifications of the material caused by successive recasting process. Generally the results showed alterations in the fracture energy of the alloy after successive recasting, resulting mainly of the increasing presence of pores and large voids, characteristic of the casting material. Thus, the interpretation of the results showed that the material did not reveal significant differences with respect to the tensile strength or elastic limit, as a function of successive recasting. The elastic modulus increased from the third recasting cycle on, indicating that the material can be recast only twice. The fracture energy of the material decreased, as the number of recasting cycles increased. With respect to the microhardness, the statistical analyses showedno significant differences. Electronic scanning microscopy revealed the presence of imperfections and defects, resulting of the recasting process. X ray diffraction and fluorescence did not show alterations in the composition of the alloy or the formation of crystalline phases between the analyzed groups. The optical micrographs showed an increasing number of voids and porosity as the material was recast. Therefore, the general conclusion of this study is that the successive recasting of of Co-Cr alloys affects the mechanical properties of the material, consequently leading to the failure of the prosthetic work. Based on the results, the best recommendadition is that the use of the material should be limited to two recasting cycles
Resumo:
Nickel alloys are frequently used in applications that require resistance at high temperatures associated with resistance to corrosion. Alloys of Ni-Si-C can be obtained by means of powder metallurgy in which powder mixtures are made of metallic nickel powders with additions of various alloying carriers for such were used in this study SiC, Si3N4 or Si metal with graphite. Carbonyl Ni powder with mean particle size of 11 mM were mixed with 3 wt% of SiC powders with an average particle size of 15, 30 and 50 μm and further samples were obtained containing 4 to 5% by mass of SiC with average particle size of 15 μm. Samples were also obtained by varying the carrier alloy, these being Si3N4 powder with graphite, with average particle size of 1.5 and 5 μm, respectively. As a metallic Si graphite with average particle size of 12.5 and 5 μm, respectively. The reference material used was nickel carbonyl sintered without adding carriers. Microstructural characterization of the alloys was made by optical microscopy and scanning electron microscopy with semi-quantitative chemical analysis. We determined the densities of the samples and measurement of microhardness. We studied the dissociation of carriers alloy after sintering at 1200 ° C for 60 minutes. Was evaluated also in the same sintering conditions, the influence of the variation of average particle size of the SiC carrier to the proportion of 3% by mass. Finally, we studied the influence of variation of the temperatures of sintering at 950, 1080 and 1200 ° C without landing and also with heights of 30, 60, 120 and 240 minutes for sintering where the temperature was 950 °C. Dilatometry curves showed that the SiC sintered Ni favors more effectively than other carriers alloy analyzed. SiC with average particle size of 15 μm active sintering the alloy more effectively than other SiC used. However, with the chemical and morphological analyzes for all leagues, it was observed that there was dissociation of SiC and Si3N4, as well as diffusion of Si in Ni matrix and carbon cluster and dispersed in the matrix, which also occurred for the alloys with Si carriers and metallic graphite. So the league that was presented better results containing Si Ni with graphite metallic alloy as carriers, since this had dispersed graphite best in the league, reaching the microstructural model proposed, which is necessary for material characteristic of solid lubricant, so how we got the best results when the density and hardness of the alloy
Preparação de óxidos mistos de níquel e zinco nanoparticulados a partir de combustíveis alternativos
Resumo:
The field of "Materials Chemistry" has been developing in recent years and there has been a great increase of interest in the synthesis and chemical and physical properties of new inorganic solids. New routes of synthesis and synthesis modified has been developed with the aim not only to optimize the processes in laboratory scale, but also on an industrial scale, and make them acceptable by current environmental legislation. The phenomenology of current solid state chemistry properties coupled with the high temperature superconductivity, ferromagnetism, porosity molecular and colors are evidence affected by the synthesis method, which in turn can influence the technological application of these materials. From this understanding, mixed oxides of nickel and zinc nanoparticulate were synthesized by microwave-assisted combustion route using three specific types of organic fuels employing the weight ratios 1:1/2 and 1:1 of cation metallic/fuel, in order to investigate the influence of such proportions to obtain the solids. The new fuels were chosen to replace, for example, urea or glycine that are the fuels most commonly preferred in this kind of synthesis. The powders without heat treatment were studied by Thermogravimetric analysis (TGA), X-Ray Diffraction (XRD) and then calcined at 900°C. After heat treatment, the samples were characterized by analysis of X Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The modified synthesis route porposed was effective for obtaining powders. Both the alternative fuels chosen as the different weight ratios employed, influenced in the morphology and obtaining oxides
Resumo:
The metalceramic crowns are usually used in dentistry because they provide a resistant structure due to its metallic base and its aesthetics from the porcelain that recovers this structure. To manufacture these crowns, a series of stages should be accomplished in the prosthetic laboratories, and many variables can influence its success. Changes in these variables cause alterations in the metallic alloy and in the porcelain, so, as consequence, in the adhesion between them. The composition of the metal alloy can be modified by recasting alloys, a common practice in some prosthetic laboratories. The aim of this paper is to make a systematic study investigating metalceramic crowns as well as analyzing the effect of recasting Ni-Cr alloys. Another variable which can influence the mechanism of metalceramic union is the temperature used in firing porcelain procedure. Each porcelain has to be fired in a fixed temperature which is determined by the manufacturer and its change can cause serious damages. This research simulate situations that may occur on laboratory procedures and observe their consequences in the quality of the metalceramic union. A scanning eletron microscopy and an optic microscopy were accomplish to analyse the metal-ceramic interface. No differences have been found when remelting alloys were used. The microhardness were similar in Ni-Cr alloys casted once, twice and three times. A wettability test was accomplished using a software developed at the Laboratório de Processamento de Materiais por Plasma, on the Universidade Federal do Rio Grande do Norte. No differences were found in the contact angle between the solid surface (metallic substratum) and the tangencial plane to the liquid surface (opaque). To analyse if the temperature of porcelain firing procedure could influence the contact area between metal and porcelain, a variation in its final temperature was achieve from 980° to 955°C. Once more, no differences have been found
Resumo:
Metal-ceramic interfaces are present in tricone drill bits with hard ceramic inserts for oil well drilling operations. The combination of actions of cutting, crushing and breaking up of rocks results in the degradation of tricone drill bits by wear, total or partial rupture of the drill bit body or the ceramic inserts, thermal shock and corrosion. Also the improper pressfitting of the ceramic inserts on the bit body may cause its total detachment, and promote serious damages to the drill bit. The improvement on the production process of metal-ceramic interfaces can eliminate or minimize some of above-mentioned failures presented in tricone drill bits, optimizing their lifetime and so reducing drilling metric cost. Brazing is a widely established technique to join metal-ceramic materials, and may be an excellent alternative to the common mechanical press fitting process of hard ceramic inserts on the steel bit body for tricone drill bit. Wetting phenomena plays an essential role in the production of metal/ceramic interfaces when a liquid phase is present in the process. In this work, 72Silver-28Copper eutectic based brazing alloys were melted onto zirconia, silicon nitride and tungsten carbide/Co substrates under high vacuum. Contact angle evolution was measured and graphically plotted, and the interfaces produced were analysed by SEM-EDX. The AgCu eutectic alloy did not wet any ceramic substrates, showing high contact angles, and so without chemical interaction between the materials. Better results were found for the systemns containing 3%wt of titanium in the AgCu alloy. The presence os titanium as a solute in the alloy produces wettable cand termodinamically stable compounds, increasing the ceramics wetting beahviour
Resumo:
The resistance of aluminum and their alloys, to the corrosion phenomenon, in aqueous solutions, is a result of the oxide layer formed. However, the corrosion process in the aluminum alloy is associated with the presence a second phase of particles or the presence of chloride ions which promote the disruption of the oxide layer located producing the corrosion process. On the other hand, the term water produced is used to describe the water after the separation of the oil and gas in API separators. The volumes of produced water arrive around 5 more times to the volume of oil produced. The greatest feature of the water is the presence of numerous pollutants. Due to the increased volume of waste around the world in the current decade, the outcome and the effect of the discharge of produced water on the environment has recently become an important issue of environmental concern where numerous treatments are aimed at reducing these contaminants before disposal. Then, this study aims to investigate the electrochemical corrosion behavior of aluminum alloy 6060 in presence of water produced and the influence of organic components as well as chloride ions, by using the electrochemical techniques of linear polarization. The modification of the passive layer and the likely breakpoints were observed by atomic force microscopy (AFM). In the pit formation potential around -0.4 to -0.8 V/EAg/AgCl was observed that the diffusion of chloride ions occurs via the layer formed with the probable formation of pits. Whereas, at temperatures above 65 °C, it was observed that the range of potential for thepit formation was -0.4 to -0.5 V/EAg/AgCl. In all reactions, the concentration of Al(OH)3 in the form of a gel was observed
Resumo:
Objective: The purpose of this study was to investigate the kinetics of this micronutrient in schoolchildren between the ages of 6 and 9 years, of both sexes, and to verify its sensitivity in detecting alterations in body zinc status. Methods: Nutritional assessment was performed by body mass index. Food intake, venous zinc tolerance test and zinc kinetics were carried out before and after 3-month oral zinc supplementation. Results: Of the 42 children studied, 76.2% had healthy weight. Only energy, calcium and fiber intake were suboptimal before and after oral zinc supplementation. Serum zinc and total-body zinc clearance, although at normal levels, increased significantly after zinc supplementation. Conclusion: We concluded, therefore, that kinetics is a sensitive tool for detecting changes in body zinc status, even in children without a deficiency of this mineral. Furthermore, kinetics showed a positive response to supplementation and may be a sensitive parameter to evaluate the efficacy of this therapy
Resumo:
The aim of this study was to assess the acute and chronic effects of zinc in serum iron profile of children aged 6-9 years in relation to nutritional status and dietary intake. The study participants were 11 children regardless of sex, aged 6-9 years. They were selected from three public schools of the city of Natal, Brazil. Body mass index was used to assess nutritional status. In order to determine the patterns of childhood growth and ideal weight we used the standards of the World Health Organization. The dietary intake assessment was based on information from a three-day prospective food survey. The variables were energy intake, protein, lipids, carbohydrates, fiber, calcium, iron and zinc. All children underwent an intravenous administration of zinc (IVAZn) before and after oral administration of zinc (OAZn) (5 mg Zn / day) for three months. We measured serum iron, hematocrit, hemoglobin and total protein, before and after the use of oral zinc. The analysis of hematocrit, hemoglobin and total protein was performed using standard methods of clinical laboratory. Zinc levels and serum iron were measured by atomic absorption spectrophotometry. The project was evaluated and approved by the Ethics in Research Committee of Federal University of Rio Grande do Norte. Results: All children had normal weight. The consumption of energy, fat, fiber, calcium and iron were below recommended levels. However, the levels of protein and carbohydrates were high. Protein and zinc increased significantly after OAZn. Carbohydrate and protein were elevated in the blood. After OAZn, both protein and zinc increased, being statistically significant. Conclusion: The potential inhibitory effect of physiological or pharmacological doses of zinc on the profile of serum iron was observed in children with healthy weight and aged between 6 and 9 years. This negative effect of zinc did not affect the levels of hematocrit or hemoglobin, and therefore did not cause anemia. This was a multidisciplinary study, involving researchers from medicine, nutrition and pharmacy. This met the requirements of multidisciplinarity of the Post Graduate Program in Health Sciences of Federal University of Rio Grande do Norte.
Resumo:
Although many studies point to alterations in the organic concentrations of zinc in elderly patients, the mechanisms by which aging might cause changes in the metabolism of this nutrient remain unclear. Thus, we assessed the changes in plasma zinc, Zinc Binding Capacity to Plasma Protein (ZnBCPP) and Saturation Index (SI), comparing elderly individuals and young adults. The zinc analyses were performed by atomic absorption spectrophotometry. A statistically significant difference (p < 0.001) was found between the two groups, in relation to plasma zinc and SI, but the ZnBCPP did not differ between the younger and older subjects. In agreement with this result, it was shown in the young group that 76% (R2 = 0.760) of the ZnBCPP variations are explained by the variations in plasma zinc and SI. In the elderly group this measure decreased to 30.5% (R2 = 0.305). We conclude, therefore, that aging may be a factor associated to changes in control mechanisms and in zinc homeostasis, and could even alter ZnBCPP response patterns and other zinc-related indicators of nutritional status.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
O zinco é um micronutriente fundamental para as funções vitais de qualquer organismo vivo e sua deficiência em humanos pode causar alterações na expressão gênica, crescimento e desenvolvimento infantil, e proteção antioxidante. Devido à sua importância, as concentrações corporais de zinco são estritamente controladas por processos homeostáticos complexos. Este controle reflete no fato da deficiência grave de zinco ser detectada apenas após privação crônica. Embora se estime que a deficiência leve seja comum, os métodos existentes para avaliação individual do estado corporal de zinco são limitados e pouco eficazes. O objetivo deste trabalho foi avaliar o zinco sérico basal e os parâmetros farmacocinéticos na determinação do estado corporal de zinco em crianças, estabelecendo relação entre esses índices. O estudo foi aprovado pelo Comitê de Ética em pesquisa do Hospital Universitário Onofre Lopes (CEP-HUOL) e 129 crianças, eutróficas e aparentemente saudáveis, entre 6 e 9 anos de idade, foram avaliadas antes e após a suplementação oral de zinco (5 mg Zn/dia) durante 3 meses. No início e fim do período houve a administração venosa de zinco (0,06537 mg de Zn/kg de peso) em 40 destas crianças para avaliação dos parâmetros farmacocinéticos por meio de três diferentes fórmulas de clearance de zinco. Os limites do CI (95%) para o zinco sérico basal variaram entre 0,94 1,00 e 0,91 0,98 μg/mL em meninas e meninos, respectivamente. Em relação aos parâmetros farmacocinéticos, a fórmula específica para um compartimento apresentou correlação positiva com o zinco sérico após a suplementação e foi efetiva em detectar mudanças no estado corporal de zinco
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
This study aimed builds reference values for copper and zinc, of healthy adults in Natal-RN, and to identify the influence of the gender, age, body mass index (BMI) and diet, on those values. They were assessed 123 healthy students of the Universidade Federal do Rio Grande do Norte (UFRN), both genders, with age between 19 and 41 years. The project was approved by the Ethics Committee in Research of UFRN. BMI was determined and the food consume was accomplished through a 24h recordatory. Dietary was evaluated as the energy, macronutrients, copper and zinc, according to the recommendations of National Academy of Sciences (2001; 2002). Analyses of the copper and zinc concentrations in the plasma and erythrocytes were accomplished by flame atomic absorption spectrometry. The casuistic came quite homogeneous as for the distribution for gender and age, being the largest number of individuals between the 19 and 24 years old. Most of the volunteers presented anthropometric nutritional state inside of the normality patterns. Chronic diseases family antecedents and sedentarysm were observed. Diet was characterized with low consumption of zinc, appropriate of copper and of lipids. Average concentrations of plasma copper (p=0,002), erythrocyte copper (μg/dL, p=0,036; μg/gHb, p=0,038), and plasma zinc (p=0,022) were different among the genders, what was demonstrated by the largest values of copper in the female gender and larger of zinc in the masculine. Plasma copper values still suffered interference of the variables: energy, carbohydrate and copper consumption, all classified in agreement with the median, besides the protein classified according to the percentage contribution for the dietary total energy. The study allowed to establish reference values for erythrocyte zinc (1.261,6-1.344,0 μg/dL e 51,0-54,3 μg/gHb) and to suggest "indicative" of reference values for plasma (108,4 130,2 μg/dL) and erythrocyte (female = 85,0 91,4 μg/dL; masculine = 80,2 86,5 μg/dL) copper and plasma zinc (female = 98,8 105,8 μg/dL; masculine = 104,6 111,6 μg/dL)