14 resultados para In-loop-simulations
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
In this Thesis, the development of the dynamic model of multirotor unmanned aerial vehicle with vertical takeoff and landing characteristics, considering input nonlinearities and a full state robust backstepping controller are presented. The dynamic model is expressed using the Newton-Euler laws, aiming to obtain a better mathematical representation of the mechanical system for system analysis and control design, not only when it is hovering, but also when it is taking-off, or landing, or flying to perform a task. The input nonlinearities are the deadzone and saturation, where the gravitational effect and the inherent physical constrains of the rotors are related and addressed. The experimental multirotor aerial vehicle is equipped with an inertial measurement unit and a sonar sensor, which appropriately provides measurements of attitude and altitude. A real-time attitude estimation scheme based on the extended Kalman filter using quaternions was developed. Then, for robustness analysis, sensors were modeled as the ideal value with addition of an unknown bias and unknown white noise. The bounded robust attitude/altitude controller were derived based on globally uniformly practically asymptotically stable for real systems, that remains globally uniformly asymptotically stable if and only if their solutions are globally uniformly bounded, dealing with convergence and stability into a ball of the state space with non-null radius, under some assumptions. The Lyapunov analysis technique was used to prove the stability of the closed-loop system, compute bounds on control gains and guaranteeing desired bounds on attitude dynamics tracking errors in the presence of measurement disturbances. The controller laws were tested in numerical simulations and in an experimental hexarotor, developed at the UFRN Robotics Laboratory
Resumo:
Nowadays, evaluation methods to measure thermal performance of buildings have been developed in order to improve thermal comfort in buildings and reduce the use of energy with active cooling and heating systems. However, in developed countries, the criteria used in rating systems to asses the thermal and energy performance of buildings have demonstrated some limitations when applied to naturally ventilated building in tropical climates. The present research has as its main objective to propose a method to evaluate the thermal performance of low-rise residential buildings in warm humid climates, through computational simulation. The method was developed in order to conceive a suitable rating system for the athermal performance assessment of such buildings using as criteria the indoor air temperature and a thermal comfort adaptive model. The research made use of the software VisualDOE 4.1 in two simulations runs of a base case modeled for two basic types of occupancies: living room and bedroom. In the first simulation run, sensitive analyses were made to identify the variables with the higher impact over the cases´ thermal performance. Besides that, the results also allowed the formulation of design recommendations to warm humid climates toward an improvement on the thermal performance of residential building in similar situations. The results of the second simulation run was used to identify the named Thermal Performance Spectrum (TPS) of both occupancies types, which reflect the variations on the thermal performance considering the local climate, building typology, chosen construction material and studied occupancies. This analysis generates an index named IDTR Thermal Performance Resultant Index, which was configured as a thermal performance rating system. It correlates the thermal performance with the number of hours that the indoor air temperature was on each of the six thermal comfort bands pre-defined that received weights to measure the discomfort intensity. The use of this rating system showed to be appropriated when used in one of the simulated cases, presenting advantages in relation to other evaluation methods and becoming a tool for the understanding of building thermal behavior
Resumo:
Oil production and exploration techniques have evolved in the last decades in order to increase fluid flows and optimize how the required equipment are used. The base functioning of Electric Submersible Pumping (ESP) lift method is the use of an electric downhole motor to move a centrifugal pump and transport the fluids to the surface. The Electric Submersible Pumping is an option that has been gaining ground among the methods of Artificial Lift due to the ability to handle a large flow of liquid in onshore and offshore environments. The performance of a well equipped with ESP systems is intrinsically related to the centrifugal pump operation. It is the pump that has the function to turn the motor power into Head. In this present work, a computer model to analyze the three-dimensional flow in a centrifugal pump used in Electric Submersible Pumping has been developed. Through the commercial program, ANSYS® CFX®, initially using water as fluid flow, the geometry and simulation parameters have been defined in order to obtain an approximation of what occurs inside the channels of the impeller and diffuser pump in terms of flow. Three different geometry conditions were initially tested to determine which is most suitable to solving the problem. After choosing the most appropriate geometry, three mesh conditions were analyzed and the obtained values were compared to the experimental characteristic curve of Head provided by the manufacturer. The results have approached the experimental curve, the simulation time and the model convergence were satisfactory if it is considered that the studied problem involves numerical analysis. After the tests with water, oil was used in the simulations. The results were compared to a methodology used in the petroleum industry to correct viscosity. In general, for models with water and oil, the results with single-phase fluids were coherent with the experimental curves and, through three-dimensional computer models, they are a preliminary evaluation for the analysis of the two-phase flow inside the channels of centrifugal pump used in ESP systems
Resumo:
Steam injection is a method usually applied to very viscous oils and consists of injecting heat to reduce the viscosity and, therefore, increase the oil mobility, improving the oil production. For designing a steam injection project it is necessary to have a reservoir simulation in order to define the various parameters necessary for an efficient heat reservoir management, and with this, improve the recovery factor of the reservoir. The purpose of this work is to show the influence of the coupled wellbore/reservoir on the thermal simulation of reservoirs under cyclic steam stimulation. In this study, the methodology used in the solution of the problem involved the development of a wellbore model for the integration of steam flow model in injection wellbores, VapMec, and a blackoil reservoir model for the injection of cyclic steam in oil reservoirs. Thus, case studies were developed for shallow and deep reservoirs, whereas the usual configurations of injector well existing in the oil industry, i.e., conventional tubing without packer, conventional tubing with packer and insulated tubing with packer. A comparative study of the injection and production parameters was performed, always considering the same operational conditions, for the two simulation models, non-coupled and a coupled model. It was observed that the results are very similar for the specified well injection rate, whereas significant differences for the specified well pressure. Finally, on the basis of computational experiments, it was concluded that the influence of the coupled wellbore/reservoir in thermal simulations using cyclic steam injection as an enhanced oil recovery method is greater for the specified well pressure, while for the specified well injection rate, the steam flow model for the injector well and the reservoir may be simulated in a non- coupled way
Resumo:
The main purpose of this work was the development of ceramic dielectric substrates of bismuth niobate (BiNbO4) doped with vanadium pentoxide (V2O5), with high permittivity, used in the construction of microstrip patch antennas with applications in wireless communications systems. The high electrical permittivity of the ceramic substrate provided a reduction of the antenna dimensions. The numerical results obtained in the simulations and the measurements performed with the microstrip patch antennas showed good agreement. These antennas can be used in wireless communication systems in various frequency bands. Results were satisfactory for antennas operating at frequencies in the S band, in the range between 2.5 GHz and 3.0 GHz.
Resumo:
Simulations based on cognitively rich agents can become a very intensive computing task, especially when the simulated environment represents a complex system. This situation becomes worse when time constraints are present. This kind of simulations would benefit from a mechanism that improves the way agents perceive and react to changes in these types of environments. In other worlds, an approach to improve the efficiency (performance and accuracy) in the decision process of autonomous agents in a simulation would be useful. In complex environments, and full of variables, it is possible that not every information available to the agent is necessary for its decision-making process, depending indeed, on the task being performed. Then, the agent would need to filter the coming perceptions in the same as we do with our attentions focus. By using a focus of attention, only the information that really matters to the agent running context are perceived (cognitively processed), which can improve the decision making process. The architecture proposed herein presents a structure for cognitive agents divided into two parts: 1) the main part contains the reasoning / planning process, knowledge and affective state of the agent, and 2) a set of behaviors that are triggered by planning in order to achieve the agent s goals. Each of these behaviors has a runtime dynamically adjustable focus of attention, adjusted according to the variation of the agent s affective state. The focus of each behavior is divided into a qualitative focus, which is responsible for the quality of the perceived data, and a quantitative focus, which is responsible for the quantity of the perceived data. Thus, the behavior will be able to filter the information sent by the agent sensors, and build a list of perceived elements containing only the information necessary to the agent, according to the context of the behavior that is currently running. Based on the human attention focus, the agent is also dotted of a affective state. The agent s affective state is based on theories of human emotion, mood and personality. This model serves as a basis for the mechanism of continuous adjustment of the agent s attention focus, both the qualitative and the quantative focus. With this mechanism, the agent can adjust its focus of attention during the execution of the behavior, in order to become more efficient in the face of environmental changes. The proposed architecture can be used in a very flexibly way. The focus of attention can work in a fixed way (neither the qualitative focus nor the quantitaive focus one changes), as well as using different combinations for the qualitative and quantitative foci variation. The architecture was built on a platform for BDI agents, but its design allows it to be used in any other type of agents, since the implementation is made only in the perception level layer of the agent. In order to evaluate the contribution proposed in this work, an extensive series of experiments were conducted on an agent-based simulation over a fire-growing scenario. In the simulations, the agents using the architecture proposed in this work are compared with similar agents (with the same reasoning model), but able to process all the information sent by the environment. Intuitively, it is expected that the omniscient agent would be more efficient, since they can handle all the possible option before taking a decision. However, the experiments showed that attention-focus based agents can be as efficient as the omniscient ones, with the advantage of being able to solve the same problems in a significantly reduced time. Thus, the experiments indicate the efficiency of the proposed architecture
Resumo:
The objectives of this research were characterizing the dairy goat production systems and model it using linear program. On the first step of this research, the model was developed using data from farms that was affiliated in the ACCOMIG/Caprileite, used a similar dairy goat production systems and have a partnership program with Universidade Federal de Minas Gerais . The data of research were from a structured questionnaire applied with farmers and monitoring of production systems during a guided visit on their farms. The results permitted identify that all farms were classified as a small and have a intensive production system. The average herd size had 63.75 dairy goats on lactation; it permits a production of 153, 38 kg of goat milk per day. It was observed that existing more than one channel of commercialization for the goat milk and their derivative products. The data obtained, on the first step of this research, was used to develop a linear program model. It was evaluated in two goat production systems, called P1 and P2. The results showed that the P1 system, with an annual birth and lactation during approximately 300 days was the best alternative for business. These results were compared with a mixed (beef and dairy) goat system in the semiarid region, which indicated merged with both systems. Therefore, to achieve profits and sustainability of the system, in all simulations it was necessary a minimum limit of funding of U.S. $ 10,000.00; this value permit earning of U.S. $ 792.00 per month and pay the investment within 5 years
Resumo:
The robustness and performance of the Variable Structure Adaptive Pole Placement Controller are evaluated in this work, where this controller is applied to control a synchronous generator connected to an infinite bus. The evaluation of the robustness of this controller will be accomplished through simulations, where the control algorithm was subjected to adverse conditions, such as: disturbances, parametric variations and unmodeled dynamic. It was also made a comparison of this control strategy with another one, using classic controllers. In the simulations, it is used a coupled model of the synchronous generator which variables have a high degree of coupling, in other words, if there is a change in the input variables of the generator, it will change all outputs simultaneously. The simulation results show which control strategy performs better and is more robust to disturbances, parametric variations and unmodeled dynamics for the control of Synchronous Generator
Resumo:
We report two theoretical works, based in numerical simulations. The first study consists in the investigation of equilibrium phases and vortex formation in Ferro and Permalloy circular and square nanoelements.The another have the aim to investigate the magnetostatic interaction between pairs of nanodisks of Ferro and Permalloy and it`s impact in the vortex structure
Resumo:
In general, an inverse problem corresponds to find a value of an element x in a suitable vector space, given a vector y measuring it, in some sense. When we discretize the problem, it usually boils down to solve an equation system f(x) = y, where f : U Rm ! Rn represents the step function in any domain U of the appropriate Rm. As a general rule, we arrive to an ill-posed problem. The resolution of inverse problems has been widely researched along the last decades, because many problems in science and industry consist in determining unknowns that we try to know, by observing its effects under certain indirect measures. Our general subject of this dissertation is the choice of Tykhonov´s regulaziration parameter of a poorly conditioned linear problem, as we are going to discuss on chapter 1 of this dissertation, focusing on the three most popular methods in nowadays literature of the area. Our more specific focus in this dissertation consists in the simulations reported on chapter 2, aiming to compare the performance of the three methods in the recuperation of images measured with the Radon transform, perturbed by the addition of gaussian i.i.d. noise. We choosed a difference operator as regularizer of the problem. The contribution we try to make, in this dissertation, mainly consists on the discussion of numerical simulations we execute, as is exposed in Chapter 2. We understand that the meaning of this dissertation lays much more on the questions which it raises than on saying something definitive about the subject. Partly, for beeing based on numerical experiments with no new mathematical results associated to it, partly for being about numerical experiments made with a single operator. On the other hand, we got some observations which seemed to us interesting on the simulations performed, considered the literature of the area. In special, we highlight observations we resume, at the conclusion of this work, about the different vocations of methods like GCV and L-curve and, also, about the optimal parameters tendency observed in the L-curve method of grouping themselves in a small gap, strongly correlated with the behavior of the generalized singular value decomposition curve of the involved operators, under reasonably broad regularity conditions in the images to be recovered
Resumo:
The objective of this study was to determine the seasonal and interannual variability and calculate the trends of wind speed in NEB and then validate the mesoscale numerical model for after engage with the microscale numerical model in order to get the wind resource at some locations in the NEB. For this we use two data sets of wind speed (weather stations and anemometric towers) and two dynamic models; one of mesoscale and another of microscale. We use statistical tools to evaluate and validate the data obtained. The simulations of the dynamic mesoscale model were made using data assimilation methods (Newtonian Relaxation and Kalman filter). The main results show: (i) Five homogeneous groups of wind speed in the NEB with higher values in winter and spring and with lower in summer and fall; (ii) The interannual variability of the wind speed in some groups stood out with higher values; (iii) The large-scale circulation modified by the El Niño and La Niña intensified wind speed for the groups with higher values; (iv) The trend analysis showed more significant negative values for G3, G4 and G5 in all seasons and in the annual average; (v) The performance of dynamic mesoscale model showed smaller errors in the locations Paracuru and São João and major errors were observed in Triunfo; (vi) Application of the Kalman filter significantly reduce the systematic errors shown in the simulations of the dynamic mesoscale model; (vii) The wind resource indicate that Paracuru and Triunfo are favorable areas for the generation of energy, and the coupling technique after validation showed better results for Paracuru. We conclude that the objective was achieved, making it possible to identify trends in homogeneous groups of wind behavior, and to evaluate the quality of both simulations with the dynamic model of mesoscale and microscale to answer questions as necessary before planning research projects in Wind-Energy area in the NEB
Resumo:
Nowadays, evaluation methods to measure thermal performance of buildings have been developed in order to improve thermal comfort in buildings and reduce the use of energy with active cooling and heating systems. However, in developed countries, the criteria used in rating systems to asses the thermal and energy performance of buildings have demonstrated some limitations when applied to naturally ventilated building in tropical climates. The present research has as its main objective to propose a method to evaluate the thermal performance of low-rise residential buildings in warm humid climates, through computational simulation. The method was developed in order to conceive a suitable rating system for the athermal performance assessment of such buildings using as criteria the indoor air temperature and a thermal comfort adaptive model. The research made use of the software VisualDOE 4.1 in two simulations runs of a base case modeled for two basic types of occupancies: living room and bedroom. In the first simulation run, sensitive analyses were made to identify the variables with the higher impact over the cases´ thermal performance. Besides that, the results also allowed the formulation of design recommendations to warm humid climates toward an improvement on the thermal performance of residential building in similar situations. The results of the second simulation run was used to identify the named Thermal Performance Spectrum (TPS) of both occupancies types, which reflect the variations on the thermal performance considering the local climate, building typology, chosen construction material and studied occupancies. This analysis generates an index named IDTR Thermal Performance Resultant Index, which was configured as a thermal performance rating system. It correlates the thermal performance with the number of hours that the indoor air temperature was on each of the six thermal comfort bands pre-defined that received weights to measure the discomfort intensity. The use of this rating system showed to be appropriated when used in one of the simulated cases, presenting advantages in relation to other evaluation methods and becoming a tool for the understanding of building thermal behavior
Resumo:
Oil production and exploration techniques have evolved in the last decades in order to increase fluid flows and optimize how the required equipment are used. The base functioning of Electric Submersible Pumping (ESP) lift method is the use of an electric downhole motor to move a centrifugal pump and transport the fluids to the surface. The Electric Submersible Pumping is an option that has been gaining ground among the methods of Artificial Lift due to the ability to handle a large flow of liquid in onshore and offshore environments. The performance of a well equipped with ESP systems is intrinsically related to the centrifugal pump operation. It is the pump that has the function to turn the motor power into Head. In this present work, a computer model to analyze the three-dimensional flow in a centrifugal pump used in Electric Submersible Pumping has been developed. Through the commercial program, ANSYS® CFX®, initially using water as fluid flow, the geometry and simulation parameters have been defined in order to obtain an approximation of what occurs inside the channels of the impeller and diffuser pump in terms of flow. Three different geometry conditions were initially tested to determine which is most suitable to solving the problem. After choosing the most appropriate geometry, three mesh conditions were analyzed and the obtained values were compared to the experimental characteristic curve of Head provided by the manufacturer. The results have approached the experimental curve, the simulation time and the model convergence were satisfactory if it is considered that the studied problem involves numerical analysis. After the tests with water, oil was used in the simulations. The results were compared to a methodology used in the petroleum industry to correct viscosity. In general, for models with water and oil, the results with single-phase fluids were coherent with the experimental curves and, through three-dimensional computer models, they are a preliminary evaluation for the analysis of the two-phase flow inside the channels of centrifugal pump used in ESP systems
Resumo:
Steam injection is a method usually applied to very viscous oils and consists of injecting heat to reduce the viscosity and, therefore, increase the oil mobility, improving the oil production. For designing a steam injection project it is necessary to have a reservoir simulation in order to define the various parameters necessary for an efficient heat reservoir management, and with this, improve the recovery factor of the reservoir. The purpose of this work is to show the influence of the coupled wellbore/reservoir on the thermal simulation of reservoirs under cyclic steam stimulation. In this study, the methodology used in the solution of the problem involved the development of a wellbore model for the integration of steam flow model in injection wellbores, VapMec, and a blackoil reservoir model for the injection of cyclic steam in oil reservoirs. Thus, case studies were developed for shallow and deep reservoirs, whereas the usual configurations of injector well existing in the oil industry, i.e., conventional tubing without packer, conventional tubing with packer and insulated tubing with packer. A comparative study of the injection and production parameters was performed, always considering the same operational conditions, for the two simulation models, non-coupled and a coupled model. It was observed that the results are very similar for the specified well injection rate, whereas significant differences for the specified well pressure. Finally, on the basis of computational experiments, it was concluded that the influence of the coupled wellbore/reservoir in thermal simulations using cyclic steam injection as an enhanced oil recovery method is greater for the specified well pressure, while for the specified well injection rate, the steam flow model for the injector well and the reservoir may be simulated in a non- coupled way