7 resultados para Humor in advertising

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This research investigates the graphic humor, in particular the political cartoon and the cartoon, texts characterized by mixing visual-oral language, and its contribution in the formation of the reader. Recovers the main theories about the comicality in general and verifies the presence of these concepts into the texts of graphic humor and how they articulate themselves within the process of seducing the reader. Grounded in the studies of Umberto Eco about the cultural industry products and its relations with the literary theories and the aesthetics reception. After analysing texts of graphic humor, the study concludes that the triad, image-word-humor reveal a sophisticated arrangement which allows the reader to practice effectively the political cartoons and cartoons of production, of sense, cooperating in such a singular manner to the formation of a reflexive reader

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bipolar disorder is a chronic psychopathology that reaches from 1 to 4% of the world population. This mood disorder is characterized by cyclical mood changes, in which an individual alternates between states of depression and mania. Mania is described in the literature as an abnormal state of exacerbation of humor, in which the subject presents an expansive, euphoric behavior, but with increased irritability, psychomotor agitation and a feeling of invincibility, which will contribute to risks exposure. The treatment of this psychopathology is complex and it is not effective in all cases, and it evokes many side effects. In this respect, the system of Nociceptin/Orphanin FQ (N/OFQ) can be studied as a possible therapeutic target for the treatment of bipolar disorder, due to its modulatory role on monoaminergic systems and on mood. This study aims to investigate the effect of NOP receptor ligands in an animal model of mania induced by methylphenidate. To this aim, locomotor activity was assessed in an open field, in mice treated with methylphenidate (10 mg/kg, sc, 15 min). Valproate (300 mg / kg, ip, 30 min), standard treatment of mania, prevented methylphenidate-induced hyperlocomotion. The acute treatment with the antagonist of NOP receptor UFP-101 (1-10 nmol, icv, 5 min) per se did not affect the spontaneous locomotion of mice, but it was able of attenuating hyperlocomotion induced by methylphenidate. The acute treatment with N/OFQ (1 and 0.1 nmol, icv, 5 min) did not alter the distance moved, but when tested at a dose of 1 ηmol, N/OFQ slightly reduced methylphenidate-induced hiperlocomotion. In conclusion, the administration of UFP-101 and N/OFQ produced antimanic-like actions. Furthermore, these data suggest that the system of N/OFQ performs a complex modulation of voluntary movement, and consequently on dopaminergic neurotransmission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brazilian humorist Millôr Fernandes has a widespread work, from literature to visual arts and journalism. Yet there is the indelible mark of humor, wherever it is. In this dissertation, I propose a reading of his work by deploying French philosopher Jacques Derrida, emphasizing how the construction of the other happens. I aim at Millôr Definitivo: A Bíblia do Caos, but other works will be contemplated when necessary. In order to carry out the analysis, I will offer a general exposition of Millorian work (especially Millôr Definitivo:A Bíblia do Caos) and a general sketch of Derridian philosophy, centered on his discussion on Western philosophy, literature and alterity. At the analysis itself, I will set the methodological axis on the quasi-concept of invention. The analysis shall stress the hypothesis of humor as the experience of alterity and impossible, showing off the humorist as the totally other. In the Millorian text, that experience is characterized by conflictivity, without possibility of resolution

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bipolar disorder has been growing in several countries. It is a disease with high mortality and has been responsible by the social isolation of the patients. Bipolar patients have alterations in circadian timing system, showing a phase shift in various physiological variables. There are several arguments demonstrating alterations in circadian rhythms may be part of the bipolar disorder pathophysiology. Given the necessity for further elucidation, the goal of this study was to validate the forced desynchronization protocol as an animal model for bipolar disorder. To do this, Wistar rats were submitted to a forced desynchronization protocol which consists in a symmetrical light dark cycle with 22h. Under this protocol, rats dissociate the locomotor activity rhythm into two components: one synchronized to the light / dark cycle with 22h, and another component with period longer than 24 hours following the animal endogenous period. These rhythms with different periods sometimes there is coincidence, which we named CAP (Coincidence Active Phase) and the opposite phase, non-coincidence, called NCAP (Non-Concidence Active Phase). The hypothesis is that in CAP animals present a mania-like behavior and animals in NCAP depressive-like behavior. We found some evidence described in detail throughout this thesis. In sum, the animals under forced desynchronization protocol were more stressed, showed an increase in stereotypic behaviors such as grooming and reduction in other behaviors such as risk assessment and vertical exploration when compared to the control group. The CAP animals showed increased locomotor activity, especially during the dark phase when compared to controls (rats under T24) and less depressive behavior in the forced swim test. The animals in NCAP showed a higher anxiety in elevated plus maze, but they don t have ahnedonia. The animals under dissociation have more labeled 5HT1A cells at the amygdala area, which appoint that they have more amygdala inhibition. Taking these data together, we could partially validated the forced desynchronization protocol as an animal model for mood oscillations

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of habitat is an important part of a species biology. One resource of great importance for the survivor and reproduction of an individual is the food resource. Thus, the social interactions an animal has during the feeding activities are of extremely importance within its behavioral aspects, which represents the part of an organism trough which it interacts with the environment, adapting to changes and variations. Herons are known to form feeding aggregations of even more than thousands of individuals, in which social components of foraging have been identified and studied for several species. More profound studies of these aspects are yet to poor for the Little Blue Heron, Egretta caerulea. Therefore, the aim of this study was to describe the social behavior (display postures, vocalizations and co-specific interactions) and the territoriality of the specie during the feeding period in an area of mud bank in the estuarine system of Cananéia, south coast of São Paulo state, Brazil. The defense of a fixed and exclusive area, closest to the mangrove, trough expulsion was observed; some thing that have not yet been registered with concrete data for the specie. Higher capture and success rates, and lower investment rates (steps/min and stabs/min) were registered for individuals foraging in areas corresponding to the defended territory. This could be one of possible reasons for the establishment of territories in the area. Four display postures were registered for the specie, two of then new in the literature, which are used in the interactions between individuals; one vocalization, that apparently is important in the social context of foraging for the specie and, possibly, has a function of advertising and proclaiming the dominance position of the territorial individual within the group. A territorial individual uses three behaviors, of the ones described: expulsion, vocalization and encounter (agonistic encounter between individuals, without physical aggression). Of these, the expulsion is apparently used in the actual defense, actively; while the other two behaviors are used in a more passive way, in the maintenance of the dominance position of the individual, helping it in the defense of its territory in a less direct manner. Therefore, with the results presented in here, new components of the social utilization of the feeding resource for the Little Blue Heron were identified, incorporating aspects of the territorial behavior for a future understanding of its possible adaptive significance. And it also reinforces the importance of the social interactions of herons foraging in great aggregations, in areas ecologically important

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: This study aimed to investigate the effects of the two peptide NOP partial agonists (UFP-113 and [F/G]N/OFQ(1-13)NH2) and the non peptide NOP partial agonist (AT-090) in the mouse emotional behavior as well as in the intracellular transduction pathways following the receptor binding. Methods: Male Swiss or CD-1 mice were used in this study together with NOP(+/+) and NOP(-/-) mice. The elevated plus maze (EPM) was used to evaluate the effects of compounds on anxiety-like behaviors. Diazepam and the NOP agonists, N/OFQ and Ro 65-6570, were used as positive controls in the EPM. NOP(+/+) and NOP(-/-) mice were used to evaluate the selectivity of those compounds that induced anxiolytic-like behaviors. The forced swim test (FST) was used to evaluate the effects of compounds on depressive-like behaviors. Nortriptyline and the NOP antagonists, UFP-101 and SB-612111, were used as positive controls in the FST. The effects of N/OFQ, UFP-101, SB-612111, UFP-113, [F/G]N/OFQ(1-13)NH2, and AT-090 were assessed in the methylphenidate-induced hyperlocomotion (MIH) test; in this assay valproate was used as positive control. The G protein and β-arrestin 2 transduction pathways of NOP receptor agonists (N/OFQ and Ro 65-6570), antagonist (UFP-101), and partial agonists (UFP-113, [F/G]N/OFQ(1-13)NH2, and AT-090) were also evaluated using an innovative assay that measures a bioluminescence resonance energy transfer process. For this, cell lines permanently co-expressing the NOP receptor coupled to luciferase (energy donor), and green fluorescent protein (energy acceptor) coupled to one of the effector proteins (G protein or β-arrestin 2) were used. Results: Diazepam (1 mg/kg), N/OFQ (1 nmol), Ro 65-6570 (0.1 mg/kg), and AT-090 (0.01 mg/kg) induced anxiolytic-like effect in mice in the EPM. The effects of Ro 65-6570 and AT-090 were selective to NOP receptor. UFP-113 (0.01-1 nmol) and [F/G]N/OFQ(1-13)NH2 (0.1-3 nmol) were inactive in the EPM. In the FST, nortriptyline (30 mg/kg), UFP-101 (10 nmol), SB-612111 (10 mg/kg), UFP-113 (0.01 and 0.1 nmol), and [F/G]N/OFQ(1-13)NH2 (0.3 and 1 nmol) induced antidepressant-like effects, while AT-090 (0.001-0.1 mg/kg) was inactive in this assay. The effects of UFP-113 and [F/G]N/OFQ(1-13)NH2 were selective to NOP receptor. Valproate (400 mg/kg) counteracted methylphenidate (MPH, 10 mg/kg)-induced hyperlocomotion in mice in the open field. N/OFQ (1 nmol), UFP-113 (0.01-0.1 nmol), and [F/G]N/OFQ(1-13)NH2 (1 nmol) were also able to reduce the MPH-induced hyperlocomotion, without changing the locomotor activity per se. The effect of UFP-113 was selective to NOP receptor. The UFP-101 (10 nmol), SB-612111 (10 mg/kg), and AT-090 (0.001-0.03 mg/kg) did not change the hyperlocomotor effect of methylphenidate. In vitro, N/OFQ and Ro 65-6570 behaved as NOP full agonists for G-protein and β-arrestin 2 pathways. AT-090 behaved as NOP receptor partial agonist for both transduction pathways, while UFP-113 and [F/G]N/OFQ(1-13)NH2 behaved as partial agonists and antagonists of NOP receptor for NOP/G protein and NOP/β-arrestin 2, respectively. UFP-101 behaved as NOP receptor antagonist for both transduction pathways. Conclusion: NOP ligands producing same effects on NOP/G protein interaction (partial agonism), but with opposite effects on β-arrestin 2 recruitment (partial agonism vs antagonism), can promote different in vivo effects on anxiety and mood as it was observed in the behavioral tests. This work corroborates the potential of NOP receptor as an innovative pharmacological target for the treatment of emotional disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: This study aimed to investigate the effects of the two peptide NOP partial agonists (UFP-113 and [F/G]N/OFQ(1-13)NH2) and the non peptide NOP partial agonist (AT-090) in the mouse emotional behavior as well as in the intracellular transduction pathways following the receptor binding. Methods: Male Swiss or CD-1 mice were used in this study together with NOP(+/+) and NOP(-/-) mice. The elevated plus maze (EPM) was used to evaluate the effects of compounds on anxiety-like behaviors. Diazepam and the NOP agonists, N/OFQ and Ro 65-6570, were used as positive controls in the EPM. NOP(+/+) and NOP(-/-) mice were used to evaluate the selectivity of those compounds that induced anxiolytic-like behaviors. The forced swim test (FST) was used to evaluate the effects of compounds on depressive-like behaviors. Nortriptyline and the NOP antagonists, UFP-101 and SB-612111, were used as positive controls in the FST. The effects of N/OFQ, UFP-101, SB-612111, UFP-113, [F/G]N/OFQ(1-13)NH2, and AT-090 were assessed in the methylphenidate-induced hyperlocomotion (MIH) test; in this assay valproate was used as positive control. The G protein and β-arrestin 2 transduction pathways of NOP receptor agonists (N/OFQ and Ro 65-6570), antagonist (UFP-101), and partial agonists (UFP-113, [F/G]N/OFQ(1-13)NH2, and AT-090) were also evaluated using an innovative assay that measures a bioluminescence resonance energy transfer process. For this, cell lines permanently co-expressing the NOP receptor coupled to luciferase (energy donor), and green fluorescent protein (energy acceptor) coupled to one of the effector proteins (G protein or β-arrestin 2) were used. Results: Diazepam (1 mg/kg), N/OFQ (1 nmol), Ro 65-6570 (0.1 mg/kg), and AT-090 (0.01 mg/kg) induced anxiolytic-like effect in mice in the EPM. The effects of Ro 65-6570 and AT-090 were selective to NOP receptor. UFP-113 (0.01-1 nmol) and [F/G]N/OFQ(1-13)NH2 (0.1-3 nmol) were inactive in the EPM. In the FST, nortriptyline (30 mg/kg), UFP-101 (10 nmol), SB-612111 (10 mg/kg), UFP-113 (0.01 and 0.1 nmol), and [F/G]N/OFQ(1-13)NH2 (0.3 and 1 nmol) induced antidepressant-like effects, while AT-090 (0.001-0.1 mg/kg) was inactive in this assay. The effects of UFP-113 and [F/G]N/OFQ(1-13)NH2 were selective to NOP receptor. Valproate (400 mg/kg) counteracted methylphenidate (MPH, 10 mg/kg)-induced hyperlocomotion in mice in the open field. N/OFQ (1 nmol), UFP-113 (0.01-0.1 nmol), and [F/G]N/OFQ(1-13)NH2 (1 nmol) were also able to reduce the MPH-induced hyperlocomotion, without changing the locomotor activity per se. The effect of UFP-113 was selective to NOP receptor. The UFP-101 (10 nmol), SB-612111 (10 mg/kg), and AT-090 (0.001-0.03 mg/kg) did not change the hyperlocomotor effect of methylphenidate. In vitro, N/OFQ and Ro 65-6570 behaved as NOP full agonists for G-protein and β-arrestin 2 pathways. AT-090 behaved as NOP receptor partial agonist for both transduction pathways, while UFP-113 and [F/G]N/OFQ(1-13)NH2 behaved as partial agonists and antagonists of NOP receptor for NOP/G protein and NOP/β-arrestin 2, respectively. UFP-101 behaved as NOP receptor antagonist for both transduction pathways. Conclusion: NOP ligands producing same effects on NOP/G protein interaction (partial agonism), but with opposite effects on β-arrestin 2 recruitment (partial agonism vs antagonism), can promote different in vivo effects on anxiety and mood as it was observed in the behavioral tests. This work corroborates the potential of NOP receptor as an innovative pharmacological target for the treatment of emotional disorders.