35 resultados para Hardware adaptativo
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Computational Intelligence Methods have been expanding to industrial applications motivated by their ability to solve problems in engineering. Therefore, the embedded systems follow the same idea of using computational intelligence tools embedded on machines. There are several works in the area of embedded systems and intelligent systems. However, there are a few papers that have joined both areas. The aim of this study was to implement an adaptive fuzzy neural hardware with online training embedded on Field Programmable Gate Array – FPGA. The system adaptation can occur during the execution of a given application, aiming online performance improvement. The proposed system architecture is modular, allowing different configurations of fuzzy neural network topologies with online training. The proposed system was applied to: mathematical function interpolation, pattern classification and selfcompensation of industrial sensors. The proposed system achieves satisfactory performance in both tasks. The experiments results shows the advantages and disadvantages of online training in hardware when performed in parallel and sequentially ways. The sequentially training method provides economy in FPGA area, however, increases the complexity of architecture actions. The parallel training method achieves high performance and reduced processing time, the pipeline technique is used to increase the proposed architecture performance. The study development was based on available tools for FPGA circuits.
Resumo:
BRITTO, Ricardo S.; MEDEIROS, Adelardo A. D.; ALSINA, Pablo J. Uma arquitetura distribuída de hardware e software para controle de um robô móvel autônomo. In: SIMPÓSIO BRASILEIRO DE AUTOMAÇÃO INTELIGENTE,8., 2007, Florianópolis. Anais... Florianópolis: SBAI, 2007.
Resumo:
The sand fly Lutzomyia longipalpis (Diptera: Psychodidae) is currently appointed as the main vector of visceral leishmaniasis in the Americas. The growth of cities in areas originally endemics to American Visceral Leishmaniasis (AVL) resulted in the spread of the disease at the same time that observed the adaptation of this species to the urban environment.Changes in behavior of L.longipalpis that enabled the adapt to increasing losings of biodiversity, as well as the frequent exposure of the vector to insecticides evident in urban areas, could justify the increasing population of the species and consequently the spread of disease for these environments .Thus, we selected sixty houses spread among three areas with increasing stages of occupation of an area endemic for AVL in Teresina-PI. We evaluated the correlation between the density of L.longipalpis captured and different aspects, such as population density of animals, vegetation cover and socio-economic aspects in each house. In addition to the correlations, the feeding preference of the vector between the predominant plant species in the neighborhoods, as well as the presence of metabolic mechanisms of resistance among the captured insects were tested. The results showed that over the growing occupations, represented by three areas, L.longipalpis demonstrate its adaptive nature through an apparent opportunistic behavior in relation to sources of carbohydrates and blood. On the evolutionary point of view, this behavior may have favored its vector competence in urban areas among the limited presence of food sources, as well as in various environments encountered.
Resumo:
In this thesis, it is developed the robustness and stability analysis of a variable structure model reference adaptive controller considering the presence of disturbances and unmodeled dynamics. The controller is applied to uncertain, monovariable, linear time-invariant plants with relative degree one, and its development is based on the indirect adaptive control. In the direct approach, well known in the literature, the switching laws are designed for the controller parameters. In the indirect one, they are designed for the plant parameters and, thus, the selection of the relays upper bounds becomes more intuitive, whereas they are related to physical parameters, which present uncertainties that can be known easier, such as resistances, capacitances, inertia moments and friction coefficients. Two versions for the controller algorithm with the stability analysis are presented. The global asymptotic stability with respect to a compact set is guaranteed for both cases. Simulation results under adverse operation conditions in order to verify the theoretical results and to show the performance and robustness of the proposed controller are showed. Moreover, for practical purposes, some simplifications on the original algorithm are developed
Resumo:
The so-called Dual Mode Adaptive Robust Control (DMARC) is proposed. The DMARC is a control strategy which interpolates the Model Reference Adaptive Control (MRAC) and the Variable Structure Model Reference Adaptive Control (VS-MRAC). The main idea is to incorporate the transient performance advantages of the VS-MRAC controller with the smoothness control signal in steady-state of the MRAC controller. Two basic algorithms are developed for the DMARC controller. In the first algorithm the controller's adjustment is made, in real time, through the variation of a parameter in the adaptation law. In the second algorithm the control law is generated, using fuzzy logic with Takagi-Sugeno s model, to obtain a combination of the MRAC and VS-MRAC control laws. In both cases, the combined control structure is shown to be robust to the parametric uncertainties and external disturbances, with a fast transient performance, practically without oscillations, and a smoothness steady-state control signal
Resumo:
This thesis presents a new structure of robust adaptive controller applied to mobile robots (surface mobile robot) with nonholonomic constraints. It acts in the dynamics and kinematics of the robot, and it is split in two distinct parts. The first part controls the robot dynamics, using variable structure model reference adaptive controllers. The second part controls the robot kinematics, using a position controller, whose objective is to make the robot to reach any point in the cartesian plan. The kinematic controller is based only on information about the robot configuration. A decoupling method is adopted to transform the linear model of the mobile robot, a multiple-input multiple-output system, into two decoupled single-input single-output systems, thus reducing the complexity of designing the controller for the mobile robot. After that, a variable structure model reference adaptive controller is applied to each one of the resulting systems. One of such controllers will be responsible for the robot position and the other for the leading angle, using reference signals generated by the position controller. To validate the proposed structure, some simulated and experimental results using differential drive mobile robots of a robot soccer kit are presented. The simulator uses the main characteristics of real physical system as noise and non-linearities such as deadzone and saturation. The experimental results were obtained through an C++ program applied to the robot soccer kit of Microrobot team at the LACI/UFRN. The simulated and experimental results are presented and discussed at the end of the text
Resumo:
Conventional control strategies used in shunt active power filters (SAPF) employs real-time instantaneous harmonic detection schemes which is usually implements with digital filters. This increase the number of current sensors on the filter structure which results in high costs. Furthermore, these detection schemes introduce time delays which can deteriorate the harmonic compensation performance. Differently from the conventional control schemes, this paper proposes a non-standard control strategy which indirectly regulates the phase currents of the power mains. The reference currents of system are generated by the dc-link voltage controller and is based on the active power balance of SAPF system. The reference currents are aligned to the phase angle of the power mains voltage vector which is obtained by using a dq phase locked loop (PLL) system. The current control strategy is implemented by an adaptive pole placement control strategy integrated to a variable structure control scheme (VS-APPC). In the VS-APPC, the internal model principle (IMP) of reference currents is used for achieving the zero steady state tracking error of the power system currents. This forces the phase current of the system mains to be sinusoidal with low harmonics content. Moreover, the current controllers are implemented on the stationary reference frame to avoid transformations to the mains voltage vector reference coordinates. This proposed current control strategy enhance the performance of SAPF with fast transient response and robustness to parametric uncertainties. Experimental results are showing for determining the effectiveness of SAPF proposed control system
Resumo:
In this work, the variable structure adaptive pole placement controller (VS-APPC) robustness and performance are evaluated and this algorithm is applied in a motor control system. The controller robustness evaluation will be done through simulations, where will be introduced in the system the following adversities: time delay, actuator response boundeds, disturbances, parametric variation and unmodeled dynamics. The VS-APPC will be compared with PI control, pole placement control (PPC) and adaptive pole placement controller (APPC). The VS-APPC will be simulated to track a step and a sine reference. It will be applied in a three-phase induction motor control system to track a sine signal in the stator reference frame. Simulation and experimental results will prove the efficiency and robustness of this control strategy
Resumo:
In this work, we present a hardware-software architecture for controlling the autonomous mobile robot Kapeck. The hardware of the robot is composed of a set of sensors and actuators organized in a CAN bus. Two embedded computers and eigth microcontroller based boards are used in the system. One of the computers hosts the vision system, due to the significant processing needs of this kind of system. The other computer is used to coordinate and access the CAN bus and to accomplish the other activities of the robot. The microcontroller-based boards are used with the sensors and actuators. The robot has this distributed configuration in order to exhibit a good real-time behavior, where the response time and the temporal predictability of the system is important. We adopted the hybrid deliberative-reactive paradigm in the proposed architecture to conciliate the reactive behavior of the sensors-actuators net and the deliberative activities required to accomplish more complex tasks
Resumo:
In academia, it is common to create didactic processors, facing practical disciplines in the area of Hardware Computer and can be used as subjects in software platforms, operating systems and compilers. Often, these processors are described without ISA standard, which requires the creation of compilers and other basic software to provide the hardware / software interface and hinder their integration with other processors and devices. Using reconfigurable devices described in a HDL language allows the creation or modification of any microarchitecture component, leading to alteration of the functional units of data path processor as well as the state machine that implements the control unit even as new needs arise. In particular, processors RISP enable modification of machine instructions, allowing entering or modifying instructions, and may even adapt to a new architecture. This work, as the object of study addressing educational soft-core processors described in VHDL, from a proposed methodology and its application on two processors with different complexity levels, shows that it s possible to tailor processors for a standard ISA without causing an increase in the level hardware complexity, ie without significant increase in chip area, while its level of performance in the application execution remains unchanged or is enhanced. The implementations also allow us to say that besides being possible to replace the architecture of a processor without changing its organization, RISP processor can switch between different instruction sets, which can be expanded to toggle between different ISAs, allowing a single processor become adaptive hybrid architecture, which can be used in embedded systems and heterogeneous multiprocessor environments
Resumo:
The Methods for compensation of harmonic currents and voltages have been widely used since these methods allow to reduce to acceptable levels the harmonic distortion in the voltages or currents in a power system, and also compensate reactive. The reduction of harmonics and reactive contributes to the reduction of losses in transmission lines and electrical machinery, increasing the power factor, reduce the occurrence of overvoltage and overcurrent. The active power filter is the most efficient method for compensation of harmonic currents and voltages. The active power filter is necessary to use current and voltage controllers loop. Conventionally, the current and voltage control loop of active filter has been done by proportional controllers integrative. This work, investigated the use of a robust adaptive control technique on the shunt active power filter current and voltage control loop to increase robustness and improve the performance of active filter to compensate for harmonics. The proposed control scheme is based on a combination of techniques for adaptive control pole placement and variable structure. The advantages of the proposed method over conventional ones are: lower total harmonic distortion, more flexibility, adaptability and robustness to the system. Moreover, the proposed control scheme improves the performance and improves the transient of active filter. The validation of the proposed technique was verified initially by a simulation program implemented in C++ language and then experimental results were obtained using a prototype three-phase active filter of 1 kVA
Resumo:
Blind Source Separation (BSS) refers to the problem of estimate original signals from observed linear mixtures with no knowledge about the sources or the mixing process. Independent Component Analysis (ICA) is a technique mainly applied to BSS problem and from the algorithms that implement this technique, FastICA is a high performance iterative algorithm of low computacional cost that uses nongaussianity measures based on high order statistics to estimate the original sources. The great number of applications where ICA has been found useful reects the need of the implementation of this technique in hardware and the natural paralelism of FastICA favors the implementation of this algorithm on digital hardware. This work proposes the implementation of FastICA on a reconfigurable hardware platform for the viability of it's use in blind source separation problems, more specifically in a hardware prototype embedded in a Field Programmable Gate Array (FPGA) board for the monitoring of beds in hospital environments. The implementations will be carried out by Simulink models and it's synthesizing will be done through the DSP Builder software from Altera Corporation.
Resumo:
This work proposes hardware architecture, VHDL described, developed to embedded Artificial Neural Network (ANN), Multilayer Perceptron (MLP). The present work idealizes that, in this architecture, ANN applications could easily embed several different topologies of MLP network industrial field. The MLP topology in which the architecture can be configured is defined by a simple and specifically data input (instructions) that determines the layers and Perceptron quantity of the network. In order to set several MLP topologies, many components (datapath) and a controller were developed to execute these instructions. Thus, an user defines a group of previously known instructions which determine ANN characteristics. The system will guarantee the MLP execution through the neural processors (Perceptrons), the components of datapath and the controller that were developed. In other way, the biases and the weights must be static, the ANN that will be embedded must had been trained previously, in off-line way. The knowledge of system internal characteristics and the VHDL language by the user are not needed. The reconfigurable FPGA device was used to implement, simulate and test all the system, allowing application in several real daily problems
Resumo:
In this work is proposed an indirect approach to the DualMode Adaptive Robust Controller (DMARC), combining the typicals transient and robustness properties of Variable Structure Systems, more specifically of Variable Structure Model Reference Adaptive Controller (VS-MRAC), with a smooth control signal in steady-state, typical of conventional Adaptive Controllers, as Model Reference Adaptive Controller (MRAC). The goal is to provide a more intuitive controller design, based on physical plant parameters, as resistances, inertia moments, capacitances, etc. Furthermore, with the objective to follow the evolutionary line of direct controllers, it will be proposed an indirect version for the Binary Model Reference Adaptive Controller (B-MRAC), that was the first controller attemptting to act as MRAC as well as VS-MRAC, depending on a pre-defined fixed parameter
Resumo:
An alternative nonlinear technique for decoupling and control is presented. This technique is based on a RBF (Radial Basis Functions) neural network and it is applied to the synchronous generator model. The synchronous generator is a coupled system, in other words, a change at one input variable of the system, changes more than one output. The RBF network will perform the decoupling, separating the control of the following outputs variables: the load angle and flux linkage in the field winding. This technique does not require knowledge of the system parameters and, due the nature of radial basis functions, it shows itself stable to parametric uncertainties, disturbances and simpler when it is applied in control. The RBF decoupler is designed in this work for decouple a nonlinear MIMO system with two inputs and two outputs. The weights between hidden and output layer are modified online, using an adaptive law in real time. The adaptive law is developed by Lyapunov s Method. A decoupling adaptive controller uses the errors between system outputs and model outputs, and filtered outputs of the system to produce control signals. The RBF network forces each outputs of generator to behave like reference model. When the RBF approaches adequately control signals, the system decoupling is achieved. A mathematical proof and analysis are showed. Simulations are presented to show the performance and robustness of the RBF network