8 resultados para Electrohydraulic manipulator
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The theater of puppets is one of the many expressions of popular culture which is marked by ongoing constructions and transformations in its symbolic representations as well as its characters and performances. In the city of Natal/RN, there is a manipulator called Heraldo Lins, an artist who operates such puppets, and has been performing his puppet since 1992. Lins has his own look at how he produces his performances and seeks to adjust his puppets to social and rentable contexts. Lins‟s performances are tailor-made in accordance with the request of his customers, as he makes up the passages and lines of his puppets according to his audience. This research aimed to study how the Heraldo Lins Mamulengos Show is built, especially its changes. We note that Lins chooses to dismantle the symbolic values of the tradition in the regular puppet theater once he adapts to modern patterns, placing himself between the traditional puppet theater and the cultural industry. The work in camp was made through a methodological focused in a participative observation and an audiovisual registry
Resumo:
This work presents a packet manipulation tool developed to realize tests in industrial devices that implements TCP/IP-based communication protocols. The tool was developed in Python programming language, as a Scapy extension. This tool, named IndPM- Industrial Packet Manipulator, can realize vulnerability tests in devices of industrial networks, industrial protocol compliance tests, receive server replies and utilize the Python interpreter to build tests. The Modbus/TCP protocol was implemented as proof-of-concept. The DNP3 over TCP protocol was also implemented but tests could not be realized because of the lack of resources. The IndPM results with Modbus/TCP protocol show some implementation faults in a Programmable Logic Controller communication module frequently utilized in automation companies
Resumo:
This work proposes a kinematic control scheme, using visual feedback for a robot arm with five degrees of freedom. Using computational vision techniques, a method was developed to determine the cartesian 3d position and orientation of the robot arm (pose) using a robot image obtained through a camera. A colored triangular label is disposed on the robot manipulator tool and efficient heuristic rules are used to obtain the vertexes of that label in the image. The tool pose is obtained from those vertexes through numerical methods. A color calibration scheme based in the K-means algorithm was implemented to guarantee the robustness of the vision system in the presence of light variations. The extrinsic camera parameters are computed from the image of four coplanar points whose cartesian 3d coordinates, related to a fixed frame, are known. Two distinct poses of the tool, initial and final, obtained from image, are interpolated to generate a desired trajectory in cartesian space. The error signal in the proposed control scheme consists in the difference between the desired tool pose and the actual tool pose. Gains are applied at the error signal and the signal resulting is mapped in joint incrementals using the pseudoinverse of the manipulator jacobian matrix. These incrementals are applied to the manipulator joints moving the tool to the desired pose
Resumo:
The present work shows the development and construction of a robot manipulator with two rotary joints and two degrees of freedom, driven by three-phase induction motors. The positions of the arm and base are made, for comparison, by a fuzzy controller and a PID controller implemented in LabVIEW® programming environment. The robot manipulator moves in an area equivalent to a quarter of a sphere. Experimental results have shown that the fuzzy controller has superior performance to PID controller when tracking single and multiple step trajectories, for the cases of load and no load
Resumo:
In conventional robot manipulator control, the desired path is specified in cartesian space and converted to joint space through inverse kinematics mapping. The joint references generated by this mapping are utilized for dynamic control in joint space. Thus, the end-effector position is, in fact, controlled indirectly, in open-loop, and the accuracy of grip position control directly depends on the accuracy of the available kinematic model. In this report, a new scheme for redundant manipulator kinematic control, based on visual servoing is proposed. In the proposed system, a robot image acquired through a CCD camera is processed in order to compute the position and orientation of each link of the robot arm. The robot task is specified as a temporal sequence of reference images of the robot arm. Thus, both the measured pose and the reference pose are specified in the same image space, and its difference is utilized to generate a cartesian space error for kinematic control purposes. The proposed control scheme was applied in a four degree-of-freedom planar redundant robot arm, experimental results are shown
Resumo:
The objective of the dissertation was the realization of kinematic modeling of a robotic wheelchair using virtual chains, allowing the wheelchair modeling as a set of robotic manipulator arms forming a cooperative parallel kinematic chain. This document presents the development of a robotic wheelchair to transport people with special needs who overcomes obstacles like a street curb and barriers to accessibility in streets and avenues, including the study of assistive technology, parallel architecture, kinematics modeling, construction and assembly of the prototype robot with the completion of a checklist of problems and barriers to accessibility in several pathways, based on rules, ordinances and existing laws. As a result, simulations were performed on the chair in various states of operation to accomplish the task of going up and down stair with different measures, making the proportional control based on kinematics. To verify the simulated results we developed a prototype robotic wheelchair. This project was developed to provide a better quality of life for people with disabilities
Resumo:
The development of non-linear controllers gained space in the theoretical ambit and of practical applications on the moment that the arising of digital computers enabled the implementation of these methodologies. In comparison with the linear controllers more utilized, the non -linear controllers present the advantage of not requiring the linearity of the system to determine the parameters of control, which permits a more efficient control especially when the system presents a high level of non-linearity. Another additional advantage is the reduction of costs, since to obtain the efficient control through linear controllers it is necessary the utilization of sensors and more refined actuators than when it is utilized a non-linear controller. Among the non-linear theories of control, the method of control by gliding ways is detached for being a method that presents more robustness, before uncertainties. It is already confirmed that the adoption of compensation on the region of residual error permits to improve better the performance of these controllers. So, in this work it is described the development of a non-linear controller that looks for an association of strategy of control by gliding ways, with the fuzzy compensation technique. Through the implementation of some strategies of fuzzy compensation, it was searched the one which provided the biggest efficiency before a system with high level of nonlinearities and uncertainties. The electrohydraulic actuator was utilized as an example of research, and the results appoint to two configurations of compensation that permit a bigger reduction of the residual error
Show de Mamulengos de Heraldo Lins: construções e transformações de um espetáculo na cultura popular
Resumo:
The theater of puppets is one of the many expressions of popular culture which is marked by ongoing constructions and transformations in its symbolic representations as well as its characters and performances. In the city of Natal/RN, there is a manipulator called Heraldo Lins, an artist who operates such puppets, and has been performing his puppet since 1992. Lins has his own look at how he produces his performances and seeks to adjust his puppets to social and rentable contexts. Lins‟s performances are tailor-made in accordance with the request of his customers, as he makes up the passages and lines of his puppets according to his audience. This research aimed to study how the Heraldo Lins Mamulengos Show is built, especially its changes. We note that Lins chooses to dismantle the symbolic values of the tradition in the regular puppet theater once he adapts to modern patterns, placing himself between the traditional puppet theater and the cultural industry. The work in camp was made through a methodological focused in a participative observation and an audiovisual registry