16 resultados para Curved Graded Multilayers
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Recently, planar antennas have been studied due to their characteristics as well as the advantages that they offers when compared with another types of antennas. In the mobile communications area, the need for this kind of antennas have became each time bigger due to the intense increase of the mobile communications this sector. That needs of antennas which operate in multifrequency and wide bandwidth. The microstrip antennas presents narrow bandwidth due the loss in the dielectric generated by radiation. Another limitation is the radiation pattern degradation due the generation of surface waves in the substrate. In this work some used techniques to minimize the disadvantages (previously mentioned) of the use of microstrip antennas are presented, those are: substrates with PBG material - Photonic Bandgap, multilayer antennas and with stacked patches. The developed analysis in this work used the TTL - Transverse Transmission Line method in the domain of Fourier transform, that uses a component of propagation in the y direction (transverse to the direction real of propagation z), treating the general equations of electric and magnetic field as functions of Ey and Hy. One of the advantages of this method is the simplification of the field equations. therefore the amount of equations lesser must the fields in directions x and z be in function of components Ey and Hy. It will be presented an brief study of the main theories that explain the superconductivity phenomenon. The BCS theory. London Equations and Two Fluids model will be the theories that will give support the application of the superconductors in the microfita antennas. The inclusion of the superconductor patch is made using the resistive complex contour condition. This work has as objective the application of the TTL method to microstrip structures with single and multilayers of rectangular patches, to obtaining the resonance frequency and radiation pattern of each structure
Resumo:
This work presents the analysis of an antenna of fractal microstrip of Koch with dielectric multilayers and inclinations in the ground plane, whose values of the angles are zero degree (without inclinations), three, seven and twelve degrees. This antenna consists of three dielectric layers arranged vertically on each other, using feeding microstrip line in patch 1, of the first layer, which will feed the remaining patches of the upper layers by electromagnetic coupling. The objective of this work is to analyze the effects caused by increase of the angle of inclination of the ground plane in some antenna parameters such as return loss, resonant frequency, bandwidth and radiation pattern. The presented results demonstrate that with the increase of the inclination angle it is possible to get antennas with characteristics multiband, with bigger bandwidth, and improving the impedance matching for each case analyzed, especially the larger angle
Resumo:
Recently the planar antennas have been studied due to their characteristics as well as the advantages that they offers when compared with another types of antennas. In the mobile communications area, the need for this kind of antennas have became each time bigger due to the intense increase of the mobile communications that needs of antennas which operate in multifrequency and wide bandwidth. The microstrip antennas presents narrow bandwidth due the loss in the dielectric generated by radiation. Another limitation is the radiation pattern degradation due the generation of surface waves in the substrate. In this work some used techniques to minimize the disadvantages (previously mentioned) of the use of microstrip antennas are presented, those are: substrates with PBG material - Photonic Bandgap, multilayer antennas and with stacked patches. The developed analysis in this work used the TTL - Transverse Transmission Line method in the domain of Fourier transform, that uses a component of propagation in the y direction (transverse to the direction real of propagation z), treating the general equations of electric and magnetic field as functions of y and y . This work has as objective the application of the TTL method to microstrip structures with single and multilayers of rectangular and triangular patches, to obtaining the resonance frequency and radiation pattern of each structure. This method is applied for the treatment of the fields in stacked structures. The Homogenization theory will be applied to obtaining the effective permittivity for s and p polarizations of the substrate composed of PBG material. Numerical results for the triangular and rectangular antennas with single layer, multilayers resonators with triangular and rectangular patches are presented (in photonic and isotropic substrates). Conclusions and suggestions for continuity of this work are presented
Resumo:
We present a study of nanostructured magnetic multilayer systems in order to syn- thesize and analyze the properties of periodic and quasiperiodic structures. This work evolved from the deployment and improvement of the sputtering technique in our labora- tories, through development of a methodology to synthesize single crystal ultrathin Fe (100) films, to the final goal of growing periodic and quasiperiodic Fe/Cr multilayers and investi- gating bilinear and biquadratic exchange coupling between ferromagnetic layer dependence for each generation. Initially we systematically studied the related effects between deposition parameters and the magnetic properties of ultrathin Fe films, grown by DC magnetron sput- tering on MgO(100) substrates. We modified deposition temperature and film thickness, in order to improve production and reproduction of nanostructured monocrystalline Fe films. For this set of samples we measured MOKE, FMR, AFM and XPS, with the aim of investi- gating their magnocrystalline and structural properties. From the magnetic viewpoint, the MOKE and FMR results showed an increase in magnetocrystalline anisotropy due to in- creased temperature. AFM measurements provided information about thickness and surface roughness, whereas XPS results were used to analyze film purity. The best set of parame- ters was used in the next stage: investigation of the structural effect on magnetic multilayer properties. In this stage multilayers composed of interspersed Fe and Cr films are deposited, following the Fibonacci periodic and quasiperiodic growth sequence on MgO (100) substrates. The behavior of MOKE and FMR curves exhibit bilinear and biquadratic exchange coupling between the ferromagnetic layers. By computationally adjusting magnetization curves, it was possible to determine the nature and intensity of the interaction between adjacent Fe layers. After finding the global minimum of magnetic energy, we used the equilibrium an- gles to obtain magnetization and magnetoresistance curves. The results observed over the course of this study demonstrate the efficiency and versatility of the sputtering technique in the synthesis of ultrathin films and high-quality multilayers. This allows the deposition of magnetic nanostructures with well-defined magnetization and magnetoresistance parameters and possible technological applications
Resumo:
There is presently a worldwide interest in artificial magnetic systems which guide research activities in universities and companies. Thin films and multilayers have a central role, revealing new magnetic phases which often lead to breakthroughs and new technology standards, never thought otherwise. Surface and confinement effects cause large impact in the magnetic phases of magnetic materials with bulk spatially periodic patterns. New magnetic phases are expected to form in thin film thicknesses comparable to the length of the intrinsic bulk magnetic unit cell. Helimagnetic materials are prototypes in this respect, since the bulk magnetic phases consist in periodic patterns with the length of the helical pitch. In this thesis we study the magnetic phases of thin rare-earth films, with surfaces oriented along the (002) direction. The thesis includes the investigation of the magnetic phases of thin Dy and Ho films, as well as the thermal hysteresis cycles of Dy thin films. The investigation of the thermal hysteresis cycles of thin Dy films has been done in collaboration with the Laboratory of Magnetic Materials of the University of Texas, at Arlington. The theoretical modeling is based on a self-consistent theory developed by the Group of Magnetism of UFRN. Contributions from the first and second neighbors exchange energy, from the anisotropy energy and the Zeeman energy are calculated in a set of nonequivalent magnetic ions, and the equilibrium magnetic phases, from the Curie temperature up to the Nèel temperature, are determined in a self-consistent manner, resulting in a vanishing torque in the magnetic ions at all planes across the thin film. Our results reproduce the known isothermal and iso-field curves of bulk Dy and Ho, and the known spin-slip phases of Ho, and indicate that: (i) the confinement in thin films leads to a new magnetic phase, with alternate helicity, which leads to the measured thermal hysteresis of Dy ultrathin films, with thicknesses ranging from 4 nm to 16 nm; (ii) thin Dy films have anisotropy dominated surface lock-in phases, with alignment of surface spins along the anisotropy easy axis directions, similar to the known spin-slip phases of Ho ( which form in the bulk and are commensurate to the crystal lattice); and (iii) the confinement in thin films change considerably the spin-slip patterns of Ho.
Resumo:
In this work, we investigated the magnetic properties of a monocrystalline Fe thin film and of Fe(80 Å)/Cr(t)/Fe(80 Å) tri-layers, with the nonmagnetic metallic Cr spacer layer thickness varying between 9 Å < t < 40 Å. The samples were deposited by the DC Sputtering on Magnesium Oxide (MgO) substrates, with (100) crystal orientation. For this investigation, experimental magneto-optical Kerr effect (MOKE) magnetometry and ferromagnetic resonance (FMR) techniques were employeed. In this case, these techniques allowed us to study the static and dynamical magnetization properties of our tri-layers. The experimental results were interpreted based on the phenomenological model that takes into account the relevant energy terms to the magnetic free energy to describe the system behavior. In the case of the monocrystalline Fe film, we performed an analytical discussion on the magnetization curves and developed a numerical simulation based on the Stoner-Wohlfarth model, that enables the numerical adjustment of the experimental magnetization curves and obtainment of the anisotropy field values. On the other hand, for the tri-layers, we analyzed the existence of bilinear and biquadratic couplings between the magnetizations of adjacent ferromagnetic layers from measurements of magnetization curves. With the FMR fields and line width angular dependencies, information on the anisotropy in three layers was obtained and the effects of different magnetic relaxation mechanisms were evidenced. It was also possible to observe the dependence of the epitaxy of the multilayers with growth and sputtering parameters. Additionally it was developed the technique of AC magnetic susceptibility in order to obtain further information during the investigation of magnetic thin films
Resumo:
We studied the spin waves modes that can propagate in magnetic multilayers composed of ferromagnetic metallic films in the nanometer scale. The ferromagnetic films (iron) are separated and coupled through the nonmagnetic spacer films (chromium). The films that make up the multilayer are stacked in a quasiperiodic pattern, following the Fibonacci and double period sequences. We used a phenomenological theory taking into account: the Zeeman energy (between the ferromagnetic films and the external magnetic field), the energy of the magneto-crystalline anisotropy (present in the ferromagnetic films), the energy of the bilinear and biquadratic couplings (between the ferromagnetic films) and the energy of the dipole-dipole interaction (between the ferromagnetic films), to describe the system. The total magnetic energy of the system is numerically minimized and the equilibrium angles of the magnetization of each ferromagnetic film are determined. We solved the equation of motion of the multilayer to find the dispersion relation for the system and, as a consequence, the spin waves modes frequencies. Our theoretical results show that, in the case of trilayers (Fe/Cr/Fe), our model reproduces with excellent agreement experimental results of Brillouin light scattering, known from the literature, by adjusting the physical parameters of the nanofilms. Furthermore, we generalize the model to N ferromagnetic layers which allowed us to determine how complex these systems become when we increase the number of components. It is worth noting that our theoretical calculations generalize all the results known from the literature
Resumo:
In this work, we present a theoretical study of the propagation of electromagnetic waves in multilayer structures called Photonic Crystals. For this purpose, we investigate the phonon-polariton band gaps in periodic and quasi-periodic (Fibonacci-type) multilayers made up of both positive and negative refractive index materials in the terahertz (THz) region. The behavior of the polaritonic band gaps as a function of the multilayer period is investigated systematically. We use a theoretical model based on the formalism of transfer matrix in order to simplify the algebra involved in obtaining the dispersion relation of phonon-polaritons (bulk and surface modes). We also present a quantitative analysis of the results, pointing out the distribution of the allowed polaritonic bandwidths for high Fibonacci generations, which gives good insight about their localization and power laws. We calculate the emittance spectrum of the electromagnetic radiation, in THZ frequency, normally and obliquely incident (s and p polarized modes) on a one-dimensional multilayer structure composed of positive and negative refractive index materials organized periodically and quasi-periodically. We model the negative refractive index material by a effective medium whose electric permittivity is characterized by a phonon-polariton frequency dependent dielectric function, while for the magnetic permeability we have a Drude like frequency-dependent function. Similarity to the one-dimensional photonic crystal, this layered effective medium, called polaritonic Crystals, allow us the control of the electromagnetic propagation, generating regions named polaritonic bandgap. The emittance spectra are determined by means of a well known theoretical model based on Kirchoff s second law, together with a transfer matrix formalism. Our results shows that the omnidirectional band gaps will appear in the THz regime, in a well defined interval, that are independent of polarization in periodic case as well as in quasiperiodic case
Resumo:
Lip squamous cell carcinoma (SCC) may develop from a premalignant condition, actinic cheilitis (AC) in 95% of the cases. Both premalignant and neoplastic lip diseases are caused mainly by chronic exposure to the ultraviolet component of solar radiation, especially UVB. This exposure causes disruption of the cell cycle and damage to DNA repair systems, like mismatch repair, altering proteins repair as hMLH1 and hMSH2. This research aimed to investigate the immunohistochemical expression of hMLH1 and hMSH2 proteins in lower lip SCCs and ACs, providing additional information about carcinogenesis of the lower lip. The sample consisted 40 cases of ACs and 40 cases of lower lip SCCs. Histological sections of 3 μm were submitted to immunoperoxidase method, for immunohistochemical analysis of lesions were counted in 1000 cells (positive and negative), data were evaluated both in absolute numbers and percentage of immunostained cells, the latter by assigning scores. Associations of the variables and comparative analysis of biomarker expression were performed by Fisher s exact and Pearson s chi-square, "t" student, one-way ANOVA, Mann- Whitney e Kruskal-Wallis tests. The level of significance was 5%. It was found that, in lower lip SCC, the mean of the proteins was higher in female patients (hMLH1= 369,80 + 223,98; hMHS2 = 534,80 + 343,62), less than 50 years old (hMLH1 = 285,50 + 190,65; hMHS2 = 540,00 + 274,79) and classified as low-grade malignancy (hMLH1 = 264,59 + 179,21; hMHS2 = 519,32 + 302,58), in these data only to sex, for hMLH1 protein, was statistically significant (p=0.034). Comparing the different lesions, we observed that for both hMLH1 and hMSH2 protein, the average of positive epithelial cells decreased as the lesion was graded at later stages. The ACs classified without dysplasia or mild dysplasia had the highest average of immunostained cells (hMLH1 = 721.23 + 88.116; hMHS2 = 781.50 + 156.93). The ACs classified as moderate or severe dysplasia had intermediate values (hMLH1 = 532,86 + 197,72; hMHS2 = 611,14 + 172,48) and SSCs of the lower lip had the lowest averages (hMLH1 = 255,03 + 199,47; hMHS2 = 518,38 + 265,68). There was a statistically significant difference between groups (p<0.001). In conclusion, our data support the hypothesis that changes in immunoexpression of these proteins is related to the process of carcinogenesis of the lower lip
Resumo:
Squamous cell carcinoma is the most common malignant neoplasm in the oral cavity, accounting for more than 90% of all malignancies in this location. Cyclooxygenases (COX s) are key enzymes on arachidonic acid metabolism and prostaglandin synthesis, being expressed basically in two forms: the constitutive (COX-1) and the inducible (COX-2). Increased levels on the expression of COX-2 have been implicated in the pathogenesis tumor progression of various forms of human cancer, including oral squamous cell carcinoma, some of what suggesting a possible interaction between COX-2 and the protein expressed by the tumor suppressor gene p53, mutated in more than 50% of all human cancers. The mean of the present research consisted in analyze the correlation between the expression of COX-2 and p53, at the protein level, as well as evaluate the difference on the expression of these two proteins with the histological grading of malignancy. 34 cases of oral squamous cell carcinoma were selected and graded according to the histological grading system proposed by Bryne (1998) and the labeling indexes (LI s) for COX-2 and p53 evaluated using immunohistochemistry method. The results revealed that COX-2 was expressed in increased levels in most of the specimens, although there was no statistic significant correlation between LI s from COX-2 and p53 (p>0.05), and there were no statistical differences on the expression of these proteins between tumors of high and low grade of malignancy (p>0.05). Interestingly, the expression of COX-2 and p53 was detected in fragments of dysplastic oral epithelium adjacent to tumor areas, on basal and suprabasal layers. The absence of statistical correlation between the expression of COX-2 and p53 proteins do not rule ot the existence of a relation between them, were it may reflect the diversity of regulatory pathways between both, different direct and indirect inhibitory effects of COX-2 over p53, as well as the wide range of activation macheenisms for COX-2 and mutational status of the p53 gene Another conclusion point that the increased expression of COX-2 observed in oral squamous cell carcinomas suggest a role for this protein in the processes of pathogenesis and tumoral evolution of this malignant neoplasm
Resumo:
Corrosion is an important phenomenon that frequently occurs in the oil industry, causing surface ablation, such as it happens on the internal surfaces of oil pipes. This work aims to obtain new systems to reduce this specific problem. The surfactants SDS, CTAB, and UNITOL L90 (in micellar and microemulsionated systems) were used as corrosion inhibitors. The systems were obtained using a C/S ratio of 2, butanol as cosorfactant, kerosene as oil phase and, as water phase, NaCl solutions of 0.5M with pH = 2, 4, and 7. Microemulsion regions were found both for direct and inverse micelles. SDS had the higher microemulsion region and the area was not dependent of pH. The study of micellization of these surfactans in the liquid-gas interface was carried out via the determination of CMC from surface tension measurements. Regarding microemulsionated systems, in the case of CTAB, CMC increased when pH was increased, being constant for SDS and UNITOL L90. Concerning micellar systems, increase in pH caused decrease and increase in CMC for SDC and CTAB, respectively. In the case of UNITOL L90, CMC was practically constant, but increased for pH = 4. The microemulsionated systems presented higher CMC values, except for UNITOL L90 L90. The negative values of free energy of micellization indicated that the process of adsorption was spontaneous. The results also indicated that, comparing microemulsionated to systems, adsorption was less spontaneous in the case of SDS and CTAB, while it did not change for UNITOL L90. SAXS experiments indicated that micelle geometry was spherical, existing also as halter and flat micelles, resuting in a better inght on the adsorption at the liquid-solid interface. Efficiency of corrosion inhibition as determined by electrochemical measurements, from corrosion currents calculated from Tafel extrapolation indicuting heat showed surfactants to be efficient even at low concentrations. Equilibrium isotherm data were fitted to the Freundlich model, indicating that surfactant adsorption occurs in the form of multilayers
Resumo:
Leguminosae is the third largest family of angiosperms with about 19.325 species and 727 genera, and it is pantropically distributed. Papilionoideae is the most diverse of the three legume subfamilies, with around 13.800 species (71%), 478 genera, and 28 tribes. Papilionoid legumes include herbs, shrubs, lianas or trees with pinnate, trifoliolate, unifoliolate or simple leaves, flowers frequently papilionate with descending imbricate petal aestivation, the petals highly differentiated into standard, keel, and wings, androecium usually diplostemous, and seeds without pleurogram, with conspicuous hilum, and the embryo radicle usually curved. The current study aims to carry out a taxonomic account of the Papilionoideae from Atlantic Forest remnants in Rio Grande do Norte, Brazil, across the herbaria data surveys, collections of field samples and morphological analysis of the collected specimens and/or herbaria materials. Identification key, descriptions, diagnostic characters, illustrations, and geographic distribution of the 68 species and 32 genera within the following tribes Phaseoleae (11 genera/24 species), Dalbergieae (9/20), Swartzieae (3/3), Millettieae (2/4), Sophoreae (2/2), Abreae (1/1), Crotalarieae (1/3), Desmodieae (1/7), Indigofereae (1/3), and Sesbanieae (1/1). The most species-rich genera were Desmodium Desv. (7 species), Centrosema (DC.) Benth. (5), Stylosanthes Sw. (5), Aeschynomene L. (4) and Macroptilium (Benth.) Urb. (4). Concerning to the habit, the herbaceous and shrubby has predominated with 60% (41 spp.), following by the vine and lianas with 28% (19 spp.) and the woody with only 12% (8 spp.). Thirty two species and the following genera are newly recorded for the flora of Rio Grande do Norte: Chaetocalyx, Cochliasanthus, Crotalaria, Galactia, Geoffroea, Macroptilium, Rhynchosia, Swartzia, Trischidium, and Vigna
Resumo:
The activation of hepatic stellate cells (HSC) is considered the most important event in hepatic fibrogenesis. The precise mechanism of this process is unknown in autoimmune hepatitis (AIH), and more evidence is needed on the evolution of fibrosis. The aim of this study was to assess these aspects in children with type 1 AIH. We analyzed 16 liver biopsy samples from eight patients, paired before treatment and after clinical remission, performed an immunohistochemical study with anti-actin smooth muscle antibody and graded fibrosisand inflammation on a scale of 0:4 (Batts and Ludwig scoring system). We observedthere was no significant reduction in fibrosis scores after 24± 18 months (2.5 ± 0.93 vs. 2.0± 0.53, P = 0.2012). There was an important decrease in inflammation: portal (2.6 ±0.74 vs. 1.3± 0.89, P = 0.0277), periportal/periseptal (3.0 ±0.76 vs. 1.4 ± 1.06, P = 0.0277), and lobular (2.8 ± 1.04 vs. 0.9± 0.99, P =0.0179). Anti-actin smooth muscle antibodies were expressed in the HSC of the initial biopsies (3491.93 ±2051.48 lm2), showing a significant reduction after remission (377.91 ±439.47 lm2) (P = 0.0117). HSC activation was demonstrated in the AIH of children. The reduction of this activation after clinical remission, which may precede a decrease in fibrosis, opens important perspectives in the follow-up of AIH.
Resumo:
In this work we study, for two different growth directions, multilayers of nanometric magnetic metallic lms grown, using Fibonacci sequences, in such a way that the thickness of the non-magnetic spacer may vary from a pair of lms to another. We applied a phenomenological theory that uses the magnetic energy to describe the behavior of the system. After we found numerically the global minimum of the total energy, we used the equilibrium angles to obtain magnetization and magnetoresistance curves. Next, we solved the equation of motion of the multilayers to nd the dispersion relation for the system. The results show that, when spacers are used with thickness so that the biquadratic coupling is strong in comparison to the bilinear one, non usual behaviors for both magnetization and magnetoresistance are observed. For example, a dependence on the parity of the Fibonacci generation utilized for constructing the system, a low magnetoresistance step in low external magnetic fields and regions that show high sensibility to small variations of the applied field. Those behaviors are not present in quasiperiodic magnetic multilayers with constant spacer thickness
Resumo:
The study of the elementary excitations such as photons, phonons, plasmons, polaritons, polarons, excitons and magnons, in crystalline solids and nanostructures systems are nowdays important active field for research works in solid state physics as well as in statistical physics. With this aim in mind, this work has two distinct parts. In the first one, we investigate the propagation of excitons polaritons in nanostructured periodic and quasiperiodic multilayers, from the description of the behavior for bulk and surface modes in their individual constituents. Through analytical, as well as computational numerical calculation, we obtain the spectra for both surface and bulk exciton-polaritons modes in the superstructures. Besides, we investigate also how the quasiperiodicity modifies the band structure related to the periodic case, stressing their amazing self-similar behavior leaving to their fractal/multifractal aspects. Afterwards, we present our results related to the so-called photonic crystals, the eletromagnetic analogue of the electronic crystalline structure. We consider periodic and quasiperiodic structures, in which one of their component presents a negative refractive index. This unusual optic characteristic is obtained when the electric permissivity and the magnetic permeability µ are both negatives for the same range of angular frequency ω of the incident wave. The given curves show how the transmission of the photon waves is modified, with a striking self-similar profile. Moreover, we analyze the modification of the usual Planck´s thermal spectrum when we use a quasiperiodic fotonic superlattice as a filter.