22 resultados para Continuous synthesis by solution combustion
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Continuous Synthesis by Solution Combustion was employed in this work aiming to obtain tin dioxide nanostructured. Basically, a precursor solution is prepared and then be atomized and sprayed into the flame, where its combustion occurs, leading to the formation of particles. This is a recent technique that shows an enormous potential in oxides deposition, mainly by the low cost of equipment and precursors employed. The tin dioxide (SnO2) nanostructured has been widely used in various applications, especially as gas sensors and varistors. In the case of sensors based on semiconducting ceramics, where surface reactions are responsible for the detection of gases, the importance of surface area and particle size is even greater. The preference for a nanostructured material is based on its significant increase in surface area compared to conventional microcrystalline powders and small particle size, which may benefit certain properties such as high electrical conductivity, high thermal stability, mechanical and chemical. In this work, were employed as precursor solution tin chloride dehydrate diluted in anhydrous ethyl alcohol. Were utilized molar ratio chloride/solvent of 0,75 with the purpose of investigate its influence in the microstructure of produced powder. The solution precursor flux was 3 mL/min. Analysis with X-ray diffraction appointed that a solution precursor with molar ratio chloride/solvent of 0,75 leads to crystalline powder with single phase and all peaks are attributed to phase SnO2. Parameters as distance from the flame with atomizer distance from the capture system with the pilot, molar ratio and solution flux doesn t affect the presence of tin dioxide in the produced powder. In the characterization of the obtained powder techniques were used as thermogravimetric (TGA) and thermodiferential analysis (DTA), particle size by laser diffraction (GDL), crystallographic analysis by X-ray diffraction (XRD), morphology by scanning electron microscopy (SEM), transmission electron microscopy (TEM), specific surface area (BET) and electrical conductivity analysis. The techniques used revealed that the SnO2 exhibits behavior of a semiconductor material, and a potentially promising material for application as varistor and sensor systems for gas
Resumo:
Continuous Synthesis by Solution Combustion was employed in this work aiming to obtain tin dioxide nanostructured. Basically, a precursor solution is prepared and then be atomized and sprayed into the flame, where its combustion occurs, leading to the formation of particles. This is a recent technique that shows an enormous potential in oxides deposition, mainly by the low cost of equipment and precursors employed. The tin dioxide (SnO2) nanostructured has been widely used in various applications, especially as gas sensors and varistors. In the case of sensors based on semiconducting ceramics, where surface reactions are responsible for the detection of gases, the importance of surface area and particle size is even greater. The preference for a nanostructured material is based on its significant increase in surface area compared to conventional microcrystalline powders and small particle size, which may benefit certain properties such as high electrical conductivity, high thermal stability, mechanical and chemical. In this work, were employed as precursor solution tin chloride dehydrate diluted in anhydrous ethyl alcohol. Were utilized molar ratio chloride/solvent of 0,75 with the purpose of investigate its influence in the microstructure of produced powder. The solution precursor flux was 3 mL/min. Analysis with X-ray diffraction appointed that a solution precursor with molar ratio chloride/solvent of 0,75 leads to crystalline powder with single phase and all peaks are attributed to phase SnO2. Parameters as distance from the flame with atomizer distance from the capture system with the pilot, molar ratio and solution flux doesn t affect the presence of tin dioxide in the produced powder. In the characterization of the obtained powder techniques were used as thermogravimetric (TGA) and thermodiferential analysis (DTA), particle size by laser diffraction (GDL), crystallographic analysis by X-ray diffraction (XRD), morphology by scanning electron microscopy (SEM), transmission electron microscopy (TEM), specific surface area (BET) and electrical conductivity analysis. The techniques used revealed that the SnO2 exhibits behavior of a semiconductor material, and a potentially promising material for application as varistor and sensor systems for gas
Resumo:
One of the main applications of methane is in the production of syngas, a mixture of hydrogen and carbon monoxide. Procedures used in this process are steam reforming, CO2 reforming, partial oxidation and autothermal reforming. The present study evaluated and compared the behavior of nickel catalysts supported on mixed oxides of cerium and manganese in the partial oxidation of methane with that of nickel catalysts supported on mixed oxides of cerium and zirconium. Mixed oxides of cerium and zirconium or cerium and manganese were synthesized using two different preparation methods, the polymeric precursor based on Pechini method and combustion reaction using a microwave. This was followed by impregnation with nickel content of 15 %. Samples were calcined at 300, 800 and 900 °C and characterized by specific surface area (SSA), X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), temperature programmed reduction (TPR) and the reaction of partial oxidation of methane. The specific areas of samples decrease with the rise in calcination temperature and after nickel impregnation. Metal-cerium solid solution was formed and the presence of other manganese species outside the solid solution structure was confirmed in the compound with the highest amounts of manganese oxides showed. With regard to scanning electron microscopy, supports based on cerium and zirconium prepared by Pechini method exhibited agglomerated particles without uniform geometry or visible pores on the surface. However, compounds containing manganese presented empty spaces in its structure. Through synthesis by combustion reaction, morphology acquired independently of the proposed composition demonstrated greater porosity in relation to Pechini synthesis. Although catalysts were prepared using different synthesis methods, the insertion of nickel showed very similar reduction profiles (TPR). In relation to nickel catalysts supported on mixed oxide of cerium and zirconium, there is an initial reduction of NiO species that present certain interaction with the support. This is followed by the reduction of Ce4+ in Ce3+ surface, with subsequent bulk reduction. For catalysts containing manganese, a reduction of nickel oxide species occurs, followed by two stages of reduction for species Mn2O3 in Mn3O4 and Mn3O4 in MnO, with subsequent reduction of bulk. With respect to partial oxidation reactions, the nickel catalyst supported on mixed oxide of cerium and zirconium, prepared using the Pechini method, exhibited CH4 conversion of approximately 80 %, with conversion of 81 % when prepared by combustion. This behavior continued for 10 hours of reaction. Manganese content was also found to directly influence catalytic activity of materials; the greater the manganese oxide content, the faster deactivation and destabilization occurred in the catalyst. In both synthesis methods, the nickel catalyst supported on mixed oxide of cerium and zirconium maintained an H2/CO ratio very close to 2 during the 10 hours of partial oxidation reaction. Samples containing manganese displayed smaller H2/CO ratios and lower performance in partial oxidation.
Resumo:
The search for ever smaller device and without loss of performance has been increasingly investigated by researchers involving applied electromagnetics. Antennas using ceramics materials with a high dielectric constant, whether acting as a substract element of patch radiating or as the radiant element are in evidence in current research, that due to the numerous advantages offered, such as: low profile, ability to reduce the its dimensions when compared to other devices, high efficiency of ratiation, suitability the microwave range and/or millimeter wave, low temperature coefficient and low cost. The reason for this high efficiency is that the dielectric losses of ceramics are very low when compared to commercially materials sold used in printed circuit boards, such as fiberglass and phenolite. These characteristics make ceramic devices suitable for operation in the microwave band. Combining the design of patch antennas and/or dielectric resonator antenna (DRA) to certain materials and the method of synthesis of these powders in the manufacture of devices, it s possible choose a material with a dielectric constant appropriate for the design of an antenna with the desired size. The main aim of this work is the design of patch antennas and DRA antennas on synthesis of ceramic powders (synthesis by combustion and polymeric precursors - Pe- chini method) nanostructured with applications in the microwave band. The conventional method of mix oxides was also used to obtain nanometric powders for the preparation of tablets and dielectric resonators. The devices manufactured and studied on high dielectric constant materials make them good candidates to have their small size compared to other devices operating at the same frequency band. The structures analyzed are excited by three different techniques: i) microstrip line, ii) aperture coupling and iii) inductive coupling. The efficiency of these techniques have been investigated experimentally and compared with simulations by Ansoft HFSS, used in the accurate analysis of the electromagnetic behavior of antennas over the finite element method (FEM). In this thesis a literature study on the theory of microstrip antennas and DRA antenna is performed. The same study is performed about the materials and methods of synthesis of ceramic powders, which are used in the manufacture of tablets and dielectric cylinders that make up the devices investigated. The dielectric media which were used to support the analysis of the DRA and/or patch antennas are analyzed using accurate simulations using the finite difference time domain (FDTD) based on the relative electrical permittivity (er) and loss tangent of these means (tand). This work also presents a study on artificial neural networks, showing the network architecture used and their characteristics, as well as the training algorithms that were used in training and modeling some parameters associated with the devices investigated
Resumo:
In this work, the structures of LaCoO3, La0,8Ba0,2CoO3 and La0,8Ca0,2CoO3 perovskites were characterized as a function of temperature (LaCoO3 structure being analyzed only at room temperature). The characterization of these materials were made by X-Ray Absorption Spectroscopy (XAS), in the cobalt K-edge, taking into account the correlated Einstein model X-ray absorption fine structure (EXAFS). The first part of the absorption spectrum corresponded the X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). These materials were prepared by the combustion method. The combustion products were calcinated at 900 0C, for 6 hours in air. Noted that the sample LaCoO3 at room temperature and samples doped with Calcium and Barium in the temperature range of 50 K to 298 K showed greater distortion to monoclinic symmetry with space group I2/a. However, the sample doped with barium at the temperatures 50 K, 220 K, and 260 K showed a slight distortion to rhombohedral symmetry with space group R-3c. The La0,8Ca0, 2CoO3 structure was few sensitive to temperature variation, showing a higher local distortion in the octahedron and a higher local thermal disorder. These interpretations were in agreement with the information electronic structural on the XANES region and geometric in the EXAFS region
Resumo:
In this work we obtain nickel ferrite by the combustion synthesis method whcih involves synthesising in an oven at temperatures of 750oC, 950oC and 125oC. The precursors oxidizing used were nickel nitrate, ferric as an oxidizing and reducing urea (fuel). After obtaining the mixture, the product was deagglomerated and past through a 270 mesh sieve. To assess the structure, morphology, particle size, magnetic and electrical properties of nanoparticles obtained the samples were sintered and characterized by x-ray distraction (XRD), x-ray fluorescence spectroscopy (FRX); scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), vibrating sample magnetometer (MAV ) and electrical permittivity. The results indicated the majority of phase inverse spinel ferrite and Hematite secondary phase nickel and nickel oxide. Through the intensity of the distraction, the average size of the crystallization peaks were half-height width which was calculated using the Scherrer equation. From observing the peaks of all the reflections, it appears that samples are crystal clear with the formation of nanoparticles. Morphologically, the nanoferritas sintered nickel pellet formation was observed with three systems of particle size below 100mn, which favored the formation of soft pellets. The average size of the grains in their micrometric scale. FRX and EDS showed qualitatively the presence of iron elements nickel and oxygen, where through quantitative data we can observe the presence of the secondary phase. The magnetic properties and the saturation magnetization and the coercive field are in accordance with the nickel, ferrite where the curve of hysteresis has aspects of a soft material. Dielectric constant values are below 10 and low tangent loss
Resumo:
This work shows that the synthesis by combustion is a prominent alternative to obtain ceramic powders of higher oxides, nanostructured and of high purity, as the ferrites of formulas Co(1-x)Zn(x)Fe2O4 e Ni(1-x)Zn(x)Fe2O4 with x ranging from 0.2 mols, in a range from 0.2 ≤ x ≥ 1.0 mol, that presents magnetic properties in coexistence of ferroelectric and ferrimagnetic states, which can be used in antennas of micro tapes and selective surfaces of low frequency in a range of miniaturized microwaves, without performance loss. The obtainment occurred through the combustion process, followed by appropriate physical processes and ordered to the utilization of the substrate sinterization process, it gave us a ceramic material, of high purity degree in a nanometric scale. The Vibrating Sample Magnetometer (VSM) analysis showed that those ferritic materials presents parameters, as materials hysteresis, that have own behavior of magnetic materials of good quality, in which the magnetization states can be suddenly changed with a relatively small variation of the field intensity, having large applications on the electronics field. The X-ray Diffraction (XRD) analysis of the ceramic powders synthesized at 900 °C, characterize its structural and geometrical properties, the crystallite size and the interplanar spacing. Other analysis were developed, as Scanning Electron Microscopy (SEM), X-ray Fluorescence (XRF), electric permittivity and the tangent loss, in high frequencies, through the equipment ZVB - 14 Vector Network Analyzer 10 MHz-14 GHz, of ROHDE & SCHWART.
Resumo:
Over the last decades, the digital inclusion public policies have significantly invested in the purchase of hardwares and softwares in order to offer technology to the Brazilian public teaching institutions, specifically computers and broadband Internet. However, the teachers education to handle these artefacts is put away, even though there is some demand from the information society. With that, this dissertation chooses as an object of study the digital literacy practices performed by 38 (thirty-eight) teachers in initial and continuous education by means of the extension course Literacies and technologies: portuguese language teaching and cyberculture demands. In this direction, we aim at investigating the digital literacy practices of developing teachers in three specific moments: before, while and after this extension action with the intent to (i) delineate the digital literacy practices performed by the collaborators before the formative action; (ii) to narrate the literacy events made possible by the extension course; (iii) to investigate the contributions of the education course to the collaborators teaching practice. We sought theoretical contributions in the literacy studies (BAYNHAM, 1995; KLEIMAN, 1995; HAMILTON; BARTON; IVANIC, 2000), specifically when it comes to digital literacy (COPE, KALANTZIS, 2000; BUZATO, 2001, 2007, 2009; SNYDER, 2002, 2008; LANKSHEAR & KNOBEL, 2002, 2008) and teacher education (PERRENOUD, 2000; SILVA, 2001). Methodologically, this virtual ethnography study (KOZINETS, 1997; HINE, 2000) is inserted into the field of Applied Linguistics and adopts a quali-quantitative research approach (NUNAN, 1992; DÖRNYEI, 2006). The data analysis permitted to evidentiate that (i) before the course, the digital literacy practices focused on the personal and academic dimensions of their realities at the expense of the professional dimension; (ii) during the extension action, the teachers collaboratively took part in the hybrid study sessions, which had a pedagogical focus on the use of ICTs, accomplishing the use of digital literacy practices - unknown before that; (iii) after the course, the attitude of the collaborator teachers concerning the use of ICTs on their regular professional basis had changed, once those teachers started to effectively make use of them, promoting social visibility to what was produced in the school. We also observed that teachers in initial education acted as more experienced peers in collaborative learning process, offering support scaffolding (VYGOTSKY, 1978; BRUNER, 1985) to teachers in continuous education. This occurred because of the undergraduates actualize digital literacy practices were more sophisticated, besides the fact being integrate generation Y (PRENSKY, 2001)
Resumo:
Marine algae are one of the major sources of biologic compounds. In extracellular matrix of these organisms there are sulfated polysaccharides that functions as structural components and provides protection against dehydration. The fraction 1.0 (F1.0) rich in sulfated galactans obtained from red seaweed Hypnea musciformis was physicochemical characterized and evaluated for pharmacologic activity through antioxidant activity, cytotoxic action on erythrocytes, anticoagulant, stimulatory action under antithrombotic heparan sulfate synthesis and their effects on cell proliferation and cycle cell progression. The main components of F1.0 were carbohydrates (49.70 ± 0.10%) and sulfate (44.59 ± 0.015%), presenting phenolic compounds (4.79 ± 0.016%) and low protein contamination (0.92 ± 0.001%). Fraction 1.0 showed polidisperse profile and signs in infrared analysis in 1262, 1074 and 930, 900 and 850 attributed to sulfate esters S=O bond, presence of a 3,6- anidrogalactose C-O bond, non-sulfated β-D-galactose and a C-O-SO4 bond in galactose C4, respectively. The fraction rich in sulfated galactans exhibited strong antioxidant action under lipid peroxidation assay with IC50 of 0.003 mg/mL. Besides the inhibition of hemolysis induced by H2O2 in erythrocytes treated with F1.0, this fraction did not promote significant cytotoxity under erythrocytes membranes. F1.0 exhibited low anticoagulant activity causing moderate direct inhibition of enzimatic activity of thrombin. This fraction promoted stimulation around of 4.6 times on this synthesis of heparan sulfate (HS) by rabbit aortic endothelial cells (RAEC) in culture when was compared with non treated cells. The fraction of this algae displayed antiproliferative action under RAEC cells causing incresing on cell number on S fase, blocking the cycle cell progression. Thus F1.0 presented cytostatic and no cytotoxic action under this cell lineage. These results suggest that F1.0 from H. musciformis have antioxidant potential which is a great effect for a compound used as food and in food industry which could be an alternative to food industry to prevent quality decay of lipid containing food due to lipid peroxidation. These polysaccharides prevent the lipid peroxidation once the fraction in study exhibited strong inhibitory action of this process. Furthermore that F1.0 present strong antithrombotic action promoting the stimulation of antithrombotic HS synthesis by endothelial cells, being important for thrombosis preventing, by its inhibitory action under reactive oxygen species (ROS) in some in vitro methods, being involved in promotion of hypercoagulability state.
Resumo:
In this work, mixed oxides were synthesized by two methods: polymeric precursor and gel-combustion. The oxides, Niquelate of Lanthanum, Cobaltate of Lanthanum and Cuprate of Lanthanum were synthesized by the polymeric precursor method, and treated at 300 º C for 2 hours, calcined at 800 º C for 6h in air atmosphere. In gel-combustion method were produced and oxides using urea and citric acid as fuel, forming for each fuel the following oxides Ferrate of Lanthanum, Cobaltato of Lanthanum and Ferrato of Cobalt and Lanthanum, which were submitted to the combustion process assisted by microwave power maximum of 10min. The samples were characterized by: thermogravimetric analysis, X-ray diffraction; fisisorção of N2 (BET method) and scanning electron microscopy. The reactions catalytic of depolymerization of poly (methyl methacrylate), were performed in a reactor of silica, with catalytic and heating system equipped with a data acquisition system and the gas chromatograph. For the catalysts synthesized using the polymeric precursor method, the cuprate of lanthanum was best for the depolymerization of the recycled polymer, obtaining 100% conversion in less time 554 (min), and the pure polymer, was the Niquelate of Lanthanum, with 100% conversion in less time 314 (min). By gel-combustion method using urea as fuel which was the best result obtained Ferrate of Lanthanum for the pure polymer with 100% conversion in less time 657 (min), and the recycled polymer was Cobaltate of Lanthanum with 100 % conversion in less time 779 (min). And using citric acid to obtain the best result for the pure polymer, was Ferrate of Lanthanum with 100% conversion in less time 821 (min and) for the recycled polymer, was Ferrate of Lanthanum with 98.28% conversion in less time 635 (min)
Resumo:
This work aims at obtaining nanoparticles of iron oxide, the magnetite one (Fe3O4), via synthesis by thermal decomposition through polyol. Thus, two routes were evaluated: a simple decomposition route assisted by reflux and a hydrothermal route both without synthetic air atmosphere using a synthesis temperature of 260ºC. In this work observed the influence of the observe of surfactants which are generally applied in the synthesis of iron oxide nanoparticles decreasing cluster areas. Further, was observed pure magnetite phase without secondary phases generally found in the iron oxide synthesis, a better control of crystallite size, morphology, crystal structure and magnetic behavior. Finally, the introduction of hydroxyl groups on the nanoparticles surface was analyzed besides its employment in the polymer production with OH radicals. The obtained materials were characterized by XRD, DLS, VSM, TEM, TG and DSC analyses. The results for the magnetite obtainment with a particle size greater than 5 nm and smaller than 11 nm, well defined morphology and good magnetic properties with superparamagnetic behavior. The reflux synthesis was more efficient in the deposition of the hydroxyl groups on the nanoparticles surface
Resumo:
The occurrence of heavy oil reservoirs have increased substantially and, due to the high viscosity characteristic of this type of oil, conventional recovery methods can not be applied. Thermal methods have been studied for the recovery of this type of oil, with a main objective to reduce its viscosity, by increasing the reservoir temperature, favoring the mobility of the oil and allowing an increasing in the productivity rate of the fields. In situ combustion (ISC) is a thermal recovery method in which heat is produced inside the reservoir by the combustion of part of the oil with injected oxygen, contrasting with the injection of fluid that is heated in the surface for subsequent injection, which leads to loss heat during the trajectory to the reservoir. The ISC is a favorable method for recovery of heavy oil, but it is still difficult to be field implemented. This work had as an objective the parametric analysis of ISC process applied to a semi-synthetic reservoir with characteristics of the Brazilian Northeast reservoirs using vertical production and vertical injection wells, as the air flow injection and the wells completions. For the analysis, was used a commercial program for simulation of oil reservoirs using thermal processes, called Steam, Thermal and Advanced Processes Reservoir Simulator (STARS) from Computer Modelling Group (CMG). From the results it was possible to analyze the efficiency of the ISC process in heavy oil reservoirs by increasing the reservoir temperature, providing a large decrease in oil viscosity, increasing its mobility inside the reservoir, as well as the improvement in the quality of this oil and therefore increasing significantly its recovered fraction. Among the analyzed parameters, the flow rate of air injection was the one which had greater influence in ISC, obtaining higher recovery factor the higher is the flow rate of injection, due to the greater amount of oxygen while ensuring the maintenance of the combustion front
Resumo:
The main aim of this research has been to analyze the identity patterns of the teacher s staff of fundamental education public schools in the Metropolitan Area of Natal-RN. It sets out from the hypothesis that being a teacher within this context grows out of the regularities of a specific habitus, which, according to Bourdieu, develops into mental schemes of thought and action within a specific social group. This habitus forms the basis on which is built the social representation of being a teacher prevailing in the group, as well as the symbolic differences that typify its identity variations. Three data sources have been fundamental in building up this thesis: (a) formative essays of students graduating from a Higher Teacher s Formation Course, as well as observing some of the public defense of these essays during field work; (b) a questionnaire aimed at classifying economically, socially, and culturally a sample of public teachers of the Natal-RN county; and (c) submitting a sub-sample of this group to the process of Multiple Classification Procedures (MCP). The analysis of data was done according to the multidimensional, non-parametric statistical procedures of both the Category Content Analysis and Enunciation Analysis methods. The results of the analysis took into account an ample set of variables, its associations and implications, the cultural and social profile of the population under scrutiny, their life styles, as well as the strategies they developed in the process of becoming a teacher, and the social representation of being a teacher . We came to the conclusion that the social identity of the teachers corps, or as we prefer to say it being a teacher , is a result of a set of regularities produced by the habitus that gives social shape and meaning to the existence of the group proper. We note the existence of identity variations caused by the variables (a) educational level; and (b) mode of action in fundamental education (if these are the first or last grades where the subjects operate). However, these variations will not break the power of the regularities that give shape, meaning, and social visibility to the group. The social representation of being a teacher points to the tensions, ambiguities, and trends inherent to common sense, as well as to a strong tendency to reassign a new meaning to being a teacher. Our thesis, therefore, is that the identity configuration of the teachers corps under scrutiny is characterized by an integrative synthesis, by-product of a habitus that is superimposed, and at the same time co-exists with different identity variations
Resumo:
The biodiesel use has become important due to its renewable character and to reduce environmental impacts during the fuel burning. Theses benefit will be valid if the fuel shows good performance, chemistry stability and compatibility with engines. Biodiesel is a good fuel to diesel engines due to its lubricity. Then, the aimed of this study was to verify the physicalchemistry properties of biodiesel and their correlations with possible elastomers damage after biodiesel be used as fuel in an injection system. The methodology was divided in three steps: biodiesels synthesis by transesterification of three vegetable oil (soybean, palm and sunflower) and their physical-chemistry characterization (viscosity, oxidative stability, flash point, acidity, humidity and density); pressurized test of compatibility between elastomers (NBR and VITON) and biodiesel, and the last one, analyze of biodiesels lubricity by tribological test ball-plan( HFRR). Also, the effect of mixture of biodiesel and diesel in different concentrations was evaluated. The results showed that VITON showed better compatibility with all biodiesel blends in relation to NBR, however when VITON had contact with sunflower biodiesel and its blends the swelling degree suffer higher influences due to biodiesel humidity. For others biodiesels and theirs blends, this elastomer kept its mechanical properties constant. The better tribological performance was observed for blends with high biodiesel concentration, lower friction coefficient was obtained when palm biodiesel was used. The main mechanisms observed during the HFRR tests were abrasive and oxidative wear
Resumo:
Over the last decades, the digital inclusion public policies have significantly invested in the purchase of hardwares and softwares in order to offer technology to the Brazilian public teaching institutions, specifically computers and broadband Internet. However, the teachers education to handle these artefacts is put away, even though there is some demand from the information society. With that, this dissertation chooses as an object of study the digital literacy practices performed by 38 (thirty-eight) teachers in initial and continuous education by means of the extension course Literacies and technologies: portuguese language teaching and cyberculture demands. In this direction, we aim at investigating the digital literacy practices of developing teachers in three specific moments: before, while and after this extension action with the intent to (i) delineate the digital literacy practices performed by the collaborators before the formative action; (ii) to narrate the literacy events made possible by the extension course; (iii) to investigate the contributions of the education course to the collaborators teaching practice. We sought theoretical contributions in the literacy studies (BAYNHAM, 1995; KLEIMAN, 1995; HAMILTON; BARTON; IVANIC, 2000), specifically when it comes to digital literacy (COPE, KALANTZIS, 2000; BUZATO, 2001, 2007, 2009; SNYDER, 2002, 2008; LANKSHEAR & KNOBEL, 2002, 2008) and teacher education (PERRENOUD, 2000; SILVA, 2001). Methodologically, this virtual ethnography study (KOZINETS, 1997; HINE, 2000) is inserted into the field of Applied Linguistics and adopts a quali-quantitative research approach (NUNAN, 1992; DÖRNYEI, 2006). The data analysis permitted to evidentiate that (i) before the course, the digital literacy practices focused on the personal and academic dimensions of their realities at the expense of the professional dimension; (ii) during the extension action, the teachers collaboratively took part in the hybrid study sessions, which had a pedagogical focus on the use of ICTs, accomplishing the use of digital literacy practices - unknown before that; (iii) after the course, the attitude of the collaborator teachers concerning the use of ICTs on their regular professional basis had changed, once those teachers started to effectively make use of them, promoting social visibility to what was produced in the school. We also observed that teachers in initial education acted as more experienced peers in collaborative learning process, offering support scaffolding (VYGOTSKY, 1978; BRUNER, 1985) to teachers in continuous education. This occurred because of the undergraduates actualize digital literacy practices were more sophisticated, besides the fact being integrate generation Y (PRENSKY, 2001)