437 resultados para Computação reconfigurável

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study shows the implementation and the embedding of an Artificial Neural Network (ANN) in hardware, or in a programmable device, as a field programmable gate array (FPGA). This work allowed the exploration of different implementations, described in VHDL, of multilayer perceptrons ANN. Due to the parallelism inherent to ANNs, there are disadvantages in software implementations due to the sequential nature of the Von Neumann architectures. As an alternative to this problem, there is a hardware implementation that allows to exploit all the parallelism implicit in this model. Currently, there is an increase in use of FPGAs as a platform to implement neural networks in hardware, exploiting the high processing power, low cost, ease of programming and ability to reconfigure the circuit, allowing the network to adapt to different applications. Given this context, the aim is to develop arrays of neural networks in hardware, a flexible architecture, in which it is possible to add or remove neurons, and mainly, modify the network topology, in order to enable a modular network of fixed-point arithmetic in a FPGA. Five synthesis of VHDL descriptions were produced: two for the neuron with one or two entrances, and three different architectures of ANN. The descriptions of the used architectures became very modular, easily allowing the increase or decrease of the number of neurons. As a result, some complete neural networks were implemented in FPGA, in fixed-point arithmetic, with a high-capacity parallel processing

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blind Source Separation (BSS) refers to the problem of estimate original signals from observed linear mixtures with no knowledge about the sources or the mixing process. Independent Component Analysis (ICA) is a technique mainly applied to BSS problem and from the algorithms that implement this technique, FastICA is a high performance iterative algorithm of low computacional cost that uses nongaussianity measures based on high order statistics to estimate the original sources. The great number of applications where ICA has been found useful reects the need of the implementation of this technique in hardware and the natural paralelism of FastICA favors the implementation of this algorithm on digital hardware. This work proposes the implementation of FastICA on a reconfigurable hardware platform for the viability of it's use in blind source separation problems, more specifically in a hardware prototype embedded in a Field Programmable Gate Array (FPGA) board for the monitoring of beds in hospital environments. The implementations will be carried out by Simulink models and it's synthesizing will be done through the DSP Builder software from Altera Corporation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A challenge that remains in the robotics field is how to make a robot to react in real time to visual stimulus. Traditional computer vision algorithms used to overcome this problem are still very expensive taking too long when using common computer processors. Very simple algorithms like image filtering or even mathematical morphology operations may take too long. Researchers have implemented image processing algorithms in high parallelism hardware devices in order to cut down the time spent in the algorithms processing, with good results. By using hardware implemented image processing techniques and a platform oriented system that uses the Nios II Processor we propose an approach that uses the hardware processing and event based programming to simplify the vision based systems while at the same time accelerating some parts of the used algorithms

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increase of applications complexity has demanded hardware even more flexible and able to achieve higher performance. Traditional hardware solutions have not been successful in providing these applications constraints. General purpose processors have inherent flexibility, since they perform several tasks, however, they can not reach high performance when compared to application-specific devices. Moreover, since application-specific devices perform only few tasks, they achieve high performance, although they have less flexibility. Reconfigurable architectures emerged as an alternative to traditional approaches and have become an area of rising interest over the last decades. The purpose of this new paradigm is to modify the device s behavior according to the application. Thus, it is possible to balance flexibility and performance and also to attend the applications constraints. This work presents the design and implementation of a coarse grained hybrid reconfigurable architecture to stream-based applications. The architecture, named RoSA, consists of a reconfigurable logic attached to a processor. Its goal is to exploit the instruction level parallelism from intensive data-flow applications to accelerate the application s execution on the reconfigurable logic. The instruction level parallelism extraction is done at compile time, thus, this work also presents an optimization phase to the RoSA architecture to be included in the GCC compiler. To design the architecture, this work also presents a methodology based on hardware reuse of datapaths, named RoSE. RoSE aims to visualize the reconfigurable units through reusability levels, which provides area saving and datapath simplification. The architecture presented was implemented in hardware description language (VHDL). It was validated through simulations and prototyping. To characterize performance analysis some benchmarks were used and they demonstrated a speedup of 11x on the execution of some applications

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Reconfigurable Computing is an intermediate solution at the resolution of complex problems, making possible to combine the speed of the hardware with the flexibility of the software. An reconfigurable architecture possess some goals, among these the increase of performance. The use of reconfigurable architectures to increase the performance of systems is a well known technology, specially because of the possibility of implementing certain slow algorithms in the current processors directly in hardware. Amongst the various segments that use reconfigurable architectures the reconfigurable processors deserve a special mention. These processors combine the functions of a microprocessor with a reconfigurable logic and can be adapted after the development process. Reconfigurable Instruction Set Processors (RISP) are a subgroup of the reconfigurable processors, that have as goal the reconfiguration of the instruction set of the processor, involving issues such formats, operands and operations of the instructions. This work possess as main objective the development of a RISP processor, combining the techniques of configuration of the set of executed instructions of the processor during the development, and reconfiguration of itself in execution time. The project and implementation in VHDL of this RISP processor has as intention to prove the applicability and the efficiency of two concepts: to use more than one set of fixed instructions, with only one set active in a given time, and the possibility to create and combine new instructions, in a way that the processor pass to recognize and use them in real time as if these existed in the fixed set of instruction. The creation and combination of instructions is made through a reconfiguration unit, incorporated to the processor. This unit allows the user to send custom instructions to the processor, so that later he can use them as if they were fixed instructions of the processor. In this work can also be found simulations of applications involving fixed and custom instructions and results of the comparisons between these applications in relation to the consumption of power and the time of execution, which confirm the attainment of the goals for which the processor was developed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The continuous evolution of integrated circuit technology has allowed integrating thousands of transistors on a single chip. This is due to the miniaturization process, which reduces the diameter of wires and transistors. One drawback of this process is that the circuit becomes more fragile and susceptible to break, making the circuit more susceptible to permanent faults during the manufacturing process as well as during their lifetime. Coarse Grained Reconfigurable Architectures (CGRAs) have been used as an alternative to traditional architectures in an attempt to tolerate such faults due to its intrinsic hardware redundancy and high performance. This work proposes a fault tolerance mechanism in a CGRA in order to increase the architecture fault tolerance even considering a high fault rate. The proposed mechanism was added to the scheduler, which is the mechanism responsible for mapping instructions onto the architecture. The instruction mapping occurs at runtime, translating binary code without the need for recompilation. Furthermore, to allow faster implementation, instruction mapping is performed using a greedy module scheduling algorithm, which consists of a software pipeline technique for loop acceleration. The results show that, even with the proposed mechanism, the time for mapping instructions is still in order of microseconds. This result allows that instruction mapping process remains at runtime. In addition, a study was also carried out mapping scheduler rate. The results demonstrate that even at fault rates over 50% in functional units and interconnection components, the scheduler was able to map instructions onto the architecture in most of the tested applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Artificial Neural Networks (ANN), which is one of the branches of Artificial Intelligence (AI), are being employed as a solution to many complex problems existing in several areas. To solve these problems, it is essential that its implementation is done in hardware. Among the strategies to be adopted and met during the design phase and implementation of RNAs in hardware, connections between neurons are the ones that need more attention. Recently, are RNAs implemented both in application specific integrated circuits's (Application Specific Integrated Circuits - ASIC) and in integrated circuits configured by the user, like the Field Programmable Gate Array (FPGA), which have the ability to be partially rewritten, at runtime, forming thus a system Partially Reconfigurable (SPR), the use of which provides several advantages, such as flexibility in implementation and cost reduction. It has been noted a considerable increase in the use of FPGAs for implementing ANNs. Given the above, it is proposed to implement an array of reconfigurable neurons for topologies Description of artificial neural network multilayer perceptrons (MLPs) in FPGA, in order to encourage feedback and reuse of neural processors (perceptrons) used in the same area of the circuit. It is further proposed, a communication network capable of performing the reuse of artificial neurons. The architecture of the proposed system will configure various topologies MLPs networks through partial reconfiguration of the FPGA. To allow this flexibility RNAs settings, a set of digital components (datapath), and a controller were developed to execute instructions that define each topology for MLP neural network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Artificial Neural Networks (ANN), which is one of the branches of Artificial Intelligence (AI), are being employed as a solution to many complex problems existing in several areas. To solve these problems, it is essential that its implementation is done in hardware. Among the strategies to be adopted and met during the design phase and implementation of RNAs in hardware, connections between neurons are the ones that need more attention. Recently, are RNAs implemented both in application specific integrated circuits's (Application Specific Integrated Circuits - ASIC) and in integrated circuits configured by the user, like the Field Programmable Gate Array (FPGA), which have the ability to be partially rewritten, at runtime, forming thus a system Partially Reconfigurable (SPR), the use of which provides several advantages, such as flexibility in implementation and cost reduction. It has been noted a considerable increase in the use of FPGAs for implementing ANNs. Given the above, it is proposed to implement an array of reconfigurable neurons for topologies Description of artificial neural network multilayer perceptrons (MLPs) in FPGA, in order to encourage feedback and reuse of neural processors (perceptrons) used in the same area of the circuit. It is further proposed, a communication network capable of performing the reuse of artificial neurons. The architecture of the proposed system will configure various topologies MLPs networks through partial reconfiguration of the FPGA. To allow this flexibility RNAs settings, a set of digital components (datapath), and a controller were developed to execute instructions that define each topology for MLP neural network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The progresses of the Internet and telecommunications have been changing the concepts of Information Technology IT, especially with regard to outsourcing services, where organizations seek cost-cutting and a better focus on the business. Along with the development of that outsourcing, a new model named Cloud Computing (CC) evolved. It proposes to migrate to the Internet both data processing and information storing. Among the key points of Cloud Computing are included cost-cutting, benefits, risks and the IT paradigms changes. Nonetheless, the adoption of that model brings forth some difficulties to decision-making, by IT managers, mainly with regard to which solutions may go to the cloud, and which service providers are more appropriate to the Organization s reality. The research has as its overall aim to apply the AHP Method (Analytic Hierarchic Process) to decision-making in Cloud Computing. There to, the utilized methodology was the exploratory kind and a study of case applied to a nationwide organization (Federation of Industries of RN). The data collection was performed through two structured questionnaires answered electronically by IT technicians, and the company s Board of Directors. The analysis of the data was carried out in a qualitative and comparative way, and we utilized the software to AHP method called Web-Hipre. The results we obtained found the importance of applying the AHP method in decision-making towards the adoption of Cloud Computing, mainly because on the occasion the research was carried out the studied company already showed interest and necessity in adopting CC, considering the internal problems with infrastructure and availability of information that the company faces nowadays. The organization sought to adopt CC, however, it had doubt regarding the cloud model and which service provider would better meet their real necessities. The application of the AHP, then, worked as a guiding tool to the choice of the best alternative, which points out the Hybrid Cloud as the ideal choice to start off in Cloud Computing. Considering the following aspects: the layer of Infrastructure as a Service IaaS (Processing and Storage) must stay partly on the Public Cloud and partly in the Private Cloud; the layer of Platform as a Service PaaS (Software Developing and Testing) had preference for the Private Cloud, and the layer of Software as a Service - SaaS (Emails/Applications) divided into emails to the Public Cloud and applications to the Private Cloud. The research also identified the important factors to hiring a Cloud Computing provider

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The frequency selective surfaces, or FSS (Frequency Selective Surfaces), are structures consisting of periodic arrays of conductive elements, called patches, which are usually very thin and they are printed on dielectric layers, or by openings perforated on very thin metallic surfaces, for applications in bands of microwave and millimeter waves. These structures are often used in aircraft, missiles, satellites, radomes, antennae reflector, high gain antennas and microwave ovens, for example. The use of these structures has as main objective filter frequency bands that can be broadcast or rejection, depending on the specificity of the required application. In turn, the modern communication systems such as GSM (Global System for Mobile Communications), RFID (Radio Frequency Identification), Bluetooth, Wi-Fi and WiMAX, whose services are highly demanded by society, have required the development of antennas having, as its main features, and low cost profile, and reduced dimensions and weight. In this context, the microstrip antenna is presented as an excellent choice for communications systems today, because (in addition to meeting the requirements mentioned intrinsically) planar structures are easy to manufacture and integration with other components in microwave circuits. Consequently, the analysis and synthesis of these devices mainly, due to the high possibility of shapes, size and frequency of its elements has been carried out by full-wave models, such as the finite element method, the method of moments and finite difference time domain. However, these methods require an accurate despite great computational effort. In this context, computational intelligence (CI) has been used successfully in the design and optimization of microwave planar structures, as an auxiliary tool and very appropriate, given the complexity of the geometry of the antennas and the FSS considered. The computational intelligence is inspired by natural phenomena such as learning, perception and decision, using techniques such as artificial neural networks, fuzzy logic, fractal geometry and evolutionary computation. This work makes a study of application of computational intelligence using meta-heuristics such as genetic algorithms and swarm intelligence optimization of antennas and frequency selective surfaces. Genetic algorithms are computational search methods based on the theory of natural selection proposed by Darwin and genetics used to solve complex problems, eg, problems where the search space grows with the size of the problem. The particle swarm optimization characteristics including the use of intelligence collectively being applied to optimization problems in many areas of research. The main objective of this work is the use of computational intelligence, the analysis and synthesis of antennas and FSS. We considered the structures of a microstrip planar monopole, ring type, and a cross-dipole FSS. We developed algorithms and optimization results obtained for optimized geometries of antennas and FSS considered. To validate results were designed, constructed and measured several prototypes. The measured results showed excellent agreement with the simulated. Moreover, the results obtained in this study were compared to those simulated using a commercial software has been also observed an excellent agreement. Specifically, the efficiency of techniques used were CI evidenced by simulated and measured, aiming at optimizing the bandwidth of an antenna for wideband operation or UWB (Ultra Wideband), using a genetic algorithm and optimizing the bandwidth, by specifying the length of the air gap between two frequency selective surfaces, using an optimization algorithm particle swarm

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Image segmentation is one of the image processing problems that deserves special attention from the scientific community. This work studies unsupervised methods to clustering and pattern recognition applicable to medical image segmentation. Natural Computing based methods have shown very attractive in such tasks and are studied here as a way to verify it's applicability in medical image segmentation. This work treats to implement the following methods: GKA (Genetic K-means Algorithm), GFCMA (Genetic FCM Algorithm), PSOKA (PSO and K-means based Clustering Algorithm) and PSOFCM (PSO and FCM based Clustering Algorithm). Besides, as a way to evaluate the results given by the algorithms, clustering validity indexes are used as quantitative measure. Visual and qualitative evaluations are realized also, mainly using data given by the BrainWeb brain simulator as ground truth

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aims to present how the reconfigurable microstrip antennas and frequency selective surfaces can be used to operate at communication systems that require changing their operation frequency according to system requirements or environmental conditions. The main purpose is to present a reconfigurable circular microstrip antenna using a parasitic ring and a reconfigurable dipole frequency selective surface. Thereupon there are shown fundamental topics like microstrip antennas, PIN diodes and the fundamental theory of reconfigurable antennas and frequency selective surfaces. There are shown the simulations and measurements of the fabricated prototypes and it is done an analysis of some parameters like the bandwidth and radiation pattern, for the antennas, and the transmission characteristics, for the frequency selective surface. Copper strips were used in place of the diodes for proof of the reconfigurability concept

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hospital Automation is an area that is constantly growing. The emergency of new technologies and hardware is transforming the processes more efficient. Nevertheless, some of the hospital processes are still being performed manually, such as monitoring of patients that is considered critical because it involves human lives. One of the factors that should be taken into account during a monitoring is the agility to detect any abnormality in vital signs of patients, as well as warning of this anomaly to the medical team involved. So, this master's thesis aims to develop an architecture to automate this process of monitoring and reporting of possible alert to a professional, so that emergency care can be done effectively. The computing mobile was used to improve the communication by distributing messages between a central located into the hospital and the mobile carried by the duty

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes hardware architecture, VHDL described, developed to embedded Artificial Neural Network (ANN), Multilayer Perceptron (MLP). The present work idealizes that, in this architecture, ANN applications could easily embed several different topologies of MLP network industrial field. The MLP topology in which the architecture can be configured is defined by a simple and specifically data input (instructions) that determines the layers and Perceptron quantity of the network. In order to set several MLP topologies, many components (datapath) and a controller were developed to execute these instructions. Thus, an user defines a group of previously known instructions which determine ANN characteristics. The system will guarantee the MLP execution through the neural processors (Perceptrons), the components of datapath and the controller that were developed. In other way, the biases and the weights must be static, the ANN that will be embedded must had been trained previously, in off-line way. The knowledge of system internal characteristics and the VHDL language by the user are not needed. The reconfigurable FPGA device was used to implement, simulate and test all the system, allowing application in several real daily problems