90 resultados para Bloqueio de tensões
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The behavior of the fluid flux in oil fields is influenced by different factors and it has a big impact on the recovery of hydrocarbons. There is a need of evaluating and adapting the actual technology to the worldwide reservoirs reality, not only on the exploration (reservoir discovers) but also on the development of those that were already discovered, however not yet produced. The in situ combustion (ISC) is a suitable technique for these recovery of hydrocarbons, although it remains complex to be implemented. The main objective of this research was to study the application of the ISC as an advanced oil recovery technique through a parametric analysis of the process using vertical wells within a semi synthetic reservoir that had the characteristics from the brazilian northwest, in order to determine which of those parameters could influence the process, verifying the technical and economical viability of the method on the oil industry. For that analysis, a commercial reservoir simulation program for thermal processes was used, called steam thermal and advanced processes reservoir simulator (STARS) from the computer modeling group (CMG). This study aims, through the numerical analysis, find results that help improve mainly the interpretation and comprehension of the main problems related to the ISC method, which are not yet dominated. From the results obtained, it was proved that the mediation promoted by the thermal process ISC over the oil recovery is very important, with rates and cumulated production positively influenced by the method application. It was seen that the application of the method improves the oil mobility as a function of the heating when the combustion front forms inside the reservoir. Among all the analyzed parameters, the activation energy presented the bigger influence, it means, the lower the activation energy the bigger the fraction of recovered oil, as a function of the chemical reactions speed rise. It was also verified that the higher the enthalpy of the reaction, the bigger the fraction of recovered oil, due to a bigger amount of released energy inside the system, helping the ISC. The reservoir parameters: porosity and permeability showed to have lower influence on the ISC. Among the operational parameters that were analyzed, the injection rate was the one that showed a stronger influence on the ISC method, because, the higher the value of the injection rate, the higher was the result obtained, mainly due to maintaining the combustion front. In connection with the oxygen concentration, an increase of the percentage of this parameter translates into a higher fraction of recovered oil, because the quantity of fuel, helping the advance and the maintenance of the combustion front for a longer period of time. About the economic analysis, the ISC method showed to be economically feasible when evaluated through the net present value (NPV), considering the injection rates: the higher the injection rate, the higher the financial incomes of the final project
Resumo:
Modeling transport of particulate suspensions in porous media is essential for understanding various processes of industrial and scientific interest. During these processes, particles are retained due to mechanisms like size exclusion (straining), adsorption, sedimentation and diffusion. In this thesis, a mathematical model is proposed and analytical solutions are obtained. The obtained analytic solutions for the proposed model, which takes pore and particle size distributions into account, were applied to predict the particle retention, pore blocking and permeability reduction during dead-end microfiltration in membranes. Various scenarios, considering different particle and pore size distributions were studied. The obtained results showed that pore blocking and permeability reduction are highly influenced by the initial pore and particle size distributions. This feature was observed even when different initial pore and particle size distributions with the same average pore size and injected particle size were considered. Finally, a mathematical model for predicting equivalent permeability in porous media during particle retention (and pore blocking) is proposed and the obtained solutions were applied to study permeability decline in different scenarios
Resumo:
This study reflects on the conflicts that exist between the different forms of participation and the political representation manifested by community organizations and social movements in the city of Natal/RN. The objective is to better understand the process of political participation of the popular classes and how the different actors have represented collective demands in the struggle for rights. To this end, we mapped the organizations, social movements and participation spaces, through a type of participant research, in which we had the opportunity to experience and study different forms of collective action and events instigated by the community organizations and the Movement for the Struggle in the Neighborhoods, Villages and Slums (Movimento de Luta nos Bairros, Vilas e Favelas) MLB. From the theoretical contributions of authors such as Maria da Glória Gohn, Marco Aurélio Nogueira, Virginia Fontes, Vera da Silva Telles, Roberto Da Matta and Carlos Montaño, as well as the empirical data collected, the study revealed that on representing their segments and occupying different spaces of participation, some actors have formed partnerships with the State, putting collective demands on a second plane. Contrarily, other actors have articulated their struggle around collective demands and manifested through direct action, mobilizing and asserting themselves in defense of a project for society
Resumo:
This work proposes a computational methodology to solve problems of optimization in structural design. The application develops, implements and integrates methods for structural analysis, geometric modeling, design sensitivity analysis and optimization. So, the optimum design problem is particularized for plane stress case, with the objective to minimize the structural mass subject to a stress criterion. Notice that, these constraints must be evaluated at a series of discrete points, whose distribution should be dense enough in order to minimize the chance of any significant constraint violation between specified points. Therefore, the local stress constraints are transformed into a global stress measure reducing the computational cost in deriving the optimal shape design. The problem is approximated by Finite Element Method using Lagrangian triangular elements with six nodes, and use a automatic mesh generation with a mesh quality criterion of geometric element. The geometric modeling, i.e., the contour is defined by parametric curves of type B-splines, these curves hold suitable characteristics to implement the Shape Optimization Method, that uses the key points like design variables to determine the solution of minimum problem. A reliable tool for design sensitivity analysis is a prerequisite for performing interactive structural design, synthesis and optimization. General expressions for design sensitivity analysis are derived with respect to key points of B-splines. The method of design sensitivity analysis used is the adjoin approach and the analytical method. The formulation of the optimization problem applies the Augmented Lagrangian Method, which convert an optimization problem constrained problem in an unconstrained. The solution of the Augmented Lagrangian function is achieved by determining the analysis of sensitivity. Therefore, the optimization problem reduces to the solution of a sequence of problems with lateral limits constraints, which is solved by the Memoryless Quasi-Newton Method It is demonstrated by several examples that this new approach of analytical design sensitivity analysis of integrated shape design optimization with a global stress criterion purpose is computationally efficient
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
This study presents new stress orientations and magnitudes from the Potiguar basin in the continental margin of Brazil. We analyzed breakout and drilled induced fractures derived from resistivity image logs run in ten oil wells. We also used direct Shmin measurements determined from hydraulic fractures and rock strength laboratory analysis. In addition, we compared these results with 19 earthquake focal mechanisms located in the crystalline basement. We observed that stress directions and magnitudes change across the basin and its basement. In the basin, the SHmax gradient of 20.0 MPa/km and the SHmax/Shmin ratio of 1.154 indicate a normal stress regime from 0.5 to 2.0 km, whereas the SHmax gradient of 24.5MPa/km and the SHmax/Shmin ratio of 1.396 indicate a strike slip stress regime from 2.5 to 4.0 km. The deeper strike-slip stress regime in the basin is similar to the regime in the basement at 1-12 km deep. This stress regime transition is consistent with an incipient tectonic inversion process in the basin. We also noted that the SHmax direction rotates from NW SE in the western part of the Potiguar basin to E W in its central and eastern part, following roughly the shoreline geometry. It indicates that local factors, as density contrast between continental and oceanic crust and sediment loading at the continental shelf influence the stress field. The concentration of fluid pressure in faults of the lowpermeability crystalline basement and its implications to establish a critically stressed fault regime in the basement is also discussed
Resumo:
This work consists of the conception, developing and implementation of a Computational Routine CAE which has algorithms suitable for the tension and deformation analysis. The system was integrated to an academic software named as OrtoCAD. The expansion algorithms for the interface CAE genereated by this work were developed in FORTRAN with the objective of increase the applications of two former works of PPGEM-UFRN: project and fabrication of a Electromechanincal reader and Software OrtoCAD. The software OrtoCAD is an interface that, orinally, includes the visualization of prothetic cartridges from the data obtained from a electromechanical reader (LEM). The LEM is basically a tridimensional scanner based on reverse engineering. First, the geometry of a residual limb (i.e., the remaining part of an amputee leg wherein the prothesis is fixed) is obtained from the data generated by LEM by the use of Reverse Engineering concepts. The proposed core FEA uses the Shell's Theory where a 2D surface is generated from a 3D piece form OrtoCAD. The shell's analysis program uses the well-known Finite Elements Method to describe the geometry and the behavior of the material. The program is based square-based Lagragean elements of nine nodes and displacement field of higher order to a better description of the tension field in the thickness. As a result, the new FEA routine provide excellent advantages by providing new features to OrtoCAD: independency of high cost commercial softwares; new routines were added to the OrtoCAD library for more realistic problems by using criteria of fault engineering of composites materials; enhanced the performance of the FEA analysis by using a specific grid element for a higher number of nodes; and finally, it has the advantage of open-source project and offering customized intrinsic versatility and wide possibilities of editing and/or optimization that may be necessary in the future
Resumo:
In this work we have investigated some aspects of the two-dimensional flow of a viscous Newtonian fluid through a disordered porous medium modeled by a random fractal system similar to the Sierpinski carpet. This fractal is formed by obstacles of various sizes, whose distribution function follows a power law. They are randomly disposed in a rectangular channel. The velocity field and other details of fluid dynamics are obtained by solving numerically of the Navier-Stokes and continuity equations at the pore level, where occurs actually the flow of fluids in porous media. The results of numerical simulations allowed us to analyze the distribution of shear stresses developed in the solid-fluid interfaces, and find algebraic relations between the viscous forces or of friction with the geometric parameters of the model, including its fractal dimension. Based on the numerical results, we proposed scaling relations involving the relevant parameters of the phenomenon, allowing quantifying the fractions of these forces with respect to size classes of obstacles. Finally, it was also possible to make inferences about the fluctuations in the form of the distribution of viscous stresses developed on the surface of obstacles.
Resumo:
The present study was to apprehend the controversies that underlie the political organization of the category nowadays. The research established time frame as the decade from 2003 to 2013, more precisely the situation that opens with Lula's election to the Presidency and its repercussions for the Brazilian left, social movements and for the category. Through documentary research, we studied the professional aspects that are organized politically in different fields , notably the Federal Council of Social Service (CFESS) and the National Federation of Social Workers (FENAS). Seeking to understand their relationship with the Ethical - Political Project of the profession, public documents were analyzed expressing the political positions of these entities, placing the controversies and political differences between them and understanding the political organization as a means to building professionals and corporate projects many.
Resumo:
The micro-deformations caused by cyclic loading origins the variation of the distances between atoms of the crystal lattice producing the irreversible component. In order to study and understand the microstructural behavior of the material this paper investigated the influence suffered by residual stresses in thrust rolling bearing races fabricated in AISI 52100 steel, after tests by cyclic rolling contact in a tribometer at 1m/s under two contact pressures (500 MPa and 1400 MPa) in dry and boundary lubrication conditions. Procedures of tests thermo-acustically isolated were developed for monitoring the contact temperature and sound pressure level signals to establish a comparison between the residual stress measurements, micro-hardness Vickers and micrographic registers searching an indication of wear evolution. The sin²ψ method by X-ray diffraction technique was used to quantify the residual stresses. Three raceway zones were selected for the evaluation of wear and surface morphology after predetermined cycling, comparing with their new condition ("as received"). Micro-hardness and residual stress measurements showed significant changes after the tests and it was possible to observe the relationship between the increase of sound pressure level and the residual stress for dry and lubricated conditions.
Resumo:
The micro-deformations caused by cyclic loading origins the variation of the distances between atoms of the crystal lattice producing the irreversible component. In order to study and understand the microstructural behavior of the material this paper investigated the influence suffered by residual stresses in thrust rolling bearing races fabricated in AISI 52100 steel, after tests by cyclic rolling contact in a tribometer at 1m/s under two contact pressures (500 MPa and 1400 MPa) in dry and boundary lubrication conditions. Procedures of tests thermo-acustically isolated were developed for monitoring the contact temperature and sound pressure level signals to establish a comparison between the residual stress measurements, micro-hardness Vickers and micrographic registers searching an indication of wear evolution. The sin²ψ method by X-ray diffraction technique was used to quantify the residual stresses. Three raceway zones were selected for the evaluation of wear and surface morphology after predetermined cycling, comparing with their new condition ("as received"). Micro-hardness and residual stress measurements showed significant changes after the tests and it was possible to observe the relationship between the increase of sound pressure level and the residual stress for dry and lubricated conditions.
Resumo:
The behavior of the fluid flux in oil fields is influenced by different factors and it has a big impact on the recovery of hydrocarbons. There is a need of evaluating and adapting the actual technology to the worldwide reservoirs reality, not only on the exploration (reservoir discovers) but also on the development of those that were already discovered, however not yet produced. The in situ combustion (ISC) is a suitable technique for these recovery of hydrocarbons, although it remains complex to be implemented. The main objective of this research was to study the application of the ISC as an advanced oil recovery technique through a parametric analysis of the process using vertical wells within a semi synthetic reservoir that had the characteristics from the brazilian northwest, in order to determine which of those parameters could influence the process, verifying the technical and economical viability of the method on the oil industry. For that analysis, a commercial reservoir simulation program for thermal processes was used, called steam thermal and advanced processes reservoir simulator (STARS) from the computer modeling group (CMG). This study aims, through the numerical analysis, find results that help improve mainly the interpretation and comprehension of the main problems related to the ISC method, which are not yet dominated. From the results obtained, it was proved that the mediation promoted by the thermal process ISC over the oil recovery is very important, with rates and cumulated production positively influenced by the method application. It was seen that the application of the method improves the oil mobility as a function of the heating when the combustion front forms inside the reservoir. Among all the analyzed parameters, the activation energy presented the bigger influence, it means, the lower the activation energy the bigger the fraction of recovered oil, as a function of the chemical reactions speed rise. It was also verified that the higher the enthalpy of the reaction, the bigger the fraction of recovered oil, due to a bigger amount of released energy inside the system, helping the ISC. The reservoir parameters: porosity and permeability showed to have lower influence on the ISC. Among the operational parameters that were analyzed, the injection rate was the one that showed a stronger influence on the ISC method, because, the higher the value of the injection rate, the higher was the result obtained, mainly due to maintaining the combustion front. In connection with the oxygen concentration, an increase of the percentage of this parameter translates into a higher fraction of recovered oil, because the quantity of fuel, helping the advance and the maintenance of the combustion front for a longer period of time. About the economic analysis, the ISC method showed to be economically feasible when evaluated through the net present value (NPV), considering the injection rates: the higher the injection rate, the higher the financial incomes of the final project
Resumo:
Modeling transport of particulate suspensions in porous media is essential for understanding various processes of industrial and scientific interest. During these processes, particles are retained due to mechanisms like size exclusion (straining), adsorption, sedimentation and diffusion. In this thesis, a mathematical model is proposed and analytical solutions are obtained. The obtained analytic solutions for the proposed model, which takes pore and particle size distributions into account, were applied to predict the particle retention, pore blocking and permeability reduction during dead-end microfiltration in membranes. Various scenarios, considering different particle and pore size distributions were studied. The obtained results showed that pore blocking and permeability reduction are highly influenced by the initial pore and particle size distributions. This feature was observed even when different initial pore and particle size distributions with the same average pore size and injected particle size were considered. Finally, a mathematical model for predicting equivalent permeability in porous media during particle retention (and pore blocking) is proposed and the obtained solutions were applied to study permeability decline in different scenarios
Resumo:
This work is about representations around the Mockery of Judas rite in the neighborhood of east zone at Natal city and the relationships between residents of neighborhood with the ritual object. The most important objective in the work is to present anthropological analysis about the mockery of Judas rite and the ritual process beyond local interpretations to rite. The concept presents in studies of Marcel Mauss, Henry Hubert and René Girard about the sacrifice are very important to this paper. We work with this hypothesis that the Mockery of Judas is sacrifice done to residents of Rocas neighborhood to many purpose, since symbolic punishment to traitor apostle till the sacrifice of victm of conflicts and tensions inside the neighborhood
Resumo:
This dissertation present an analysis of the interethnic conflict between Makuxi and Wapixana at the current moment in the Maloca of the Adobe, Aboriginal Land Fox-Mountain range of the Sun, in the State of Roraima. The theoretical field was boarded in the Ethnology, pursuing situations in local history, with edges in ethno-history. The research elapsed of the deepening necessity on the social relations and aboriginal politics, for the intercultural professional exercise of educator, appealing the bibliographical survey and participant comment as method; not directive interviews, photographs, filmings and daily register in of field, as techniques carried through in the period of 2006 to 2007. Although to inhabit in the same area and to establish marriages between itself, individuals and groups express tensions, aggravated with the landmark and legal recognition of the area, which generated inter dispute and intraetnias, mainly with the intrusion of farmers, rizicultores and the form of governmental influence. A relation of rivalry, individual and collective was evidenced, suggesting the strengthenig and not it fractionly, of the fights external politics, interns and in way to the cultural diversity and social adversity