153 resultados para Síntese inorgânica
Resumo:
Increasing energy demand is being met largely by fossil fuel reserves, which emit CO2, SOx gases and various other pollutants. So does the search for fuels that emit fewer pollutants and have the same energy efficiency. In this context, hydrogen (H2) has been increasingly recognized as a potential carrier of energy for the near future. This is because the H2 can be obtained by different routes and has a wide application area , in addition to having clean burning, generating only H2O as a product of combustion , and higher energy density per unit mass . The Chemical Looping Reforming process (CLR) has been extensively investigated in recent years, it is possible to regenerate the catalyst by applying cycles of reduction and oxidation. This work has as main objective to develop catalysts based on nickel and cobalt to study the reactivity of reform with chemical recycling process. The catalysts were prepared by three different methods: combustion assisted by microwave, wet impregnation and co-precipitation. All catalysts synthesized have the same amount by weight of the active phases (60% w / w). The other 40 % m/m consists in La2O3 (8% w / w), Al2O3 (30% w / w) and MgO (2%). Oxygen carriers have been named as follows: N or C, nickel or cobalt, followed by the number 3 or 6, meaning 30 to 60% of active phase in the oxide form and C, CI or CP, which means self-combustion assisted by microwave, self-combustion assisted by microwave followed by wet impregnation and co-precipitation. The oxygen carriers were then characterized by the techniques of X-ray diffraction (XRD), surface area (BET), temperature programmed reduction (TPR) and scanning electron microscopy (SEM). The characterization results showed that the different synthesis methods have led to obtaining different morphologies and structures. Redox tests using CH4 as reducing agent and sintetic air as oxidant agent was done with N6C and C6C, N6CI and C6CI and N6CP and C6CP oxygen carriers. The tests revealed different behaviors, depending on active phase and on synthesis procedure. N6C oxygen carrier produced high levels of H2. The C6CI oxygen carrier produced CO2 and H2O without carbon deposits.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Resumo:
Clays are materials with specific properties that make them promising for various studies. In this work we used the vermiculite clay as support for iron compounds, in order to obtain promising materials for application in the heterogeneous type photo-Fenton process. In all, the study included six solid, starting from the vermiculite (V0) was obtained calcined vermiculite (V0-C), the mixed material (V0/β-FeOOH) formed by vermiculite more akaganeite, exchanged vermiculite (v0t-C), vermiculite impregnated Wet (V0u-C) and V0u-CL that is the solid obtained by impregnating with a back washing. The solids of the study had their physical and chemical characteristics investigated by the following characterization techniques: X-Ray Diffraction (XRD), Infrared Spectroscopy (IR), Energy Dispersive Spectroscopy (EDS), X-Ray Fluorescence Spectroscopy (XRF), UV-Vis by Diffuse Reflectance (DR UV-Vis), Thermogravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM). The V0 material showed three distinct phases, which are the very vermiculite, hidrobiotite and biotite, the last two phases are part of the geological of formation process vermiculite. The solids obtained after the modification showed an increase in the amount of iron present in the clay, these being quantities important for application in photocatalysis. The micrographs and EDS data, show that after treatment of addition of the metal , the iron was intercalary in structure of vermiculite for solid V0t-C and V0u-C, however, this did not occur with mixed material. In the photoFenton process, was observed a maximum removal of 88.8% of the dye methylene blue coloring for the catalyst V0/β-FeOOH, while for the other solids was obtained values between 76.8 and 62.6%, compared to 37.8% of discoloration without the presence of catalyst. Therefore, it is concluded that the vermiculite clay presents as a good catalyst and iron support for the, beyond of presenting a low cost because of its high abundance.
Resumo:
The PSFC (Pr0.5Sr0.5Fe1-xCuxO3-δ) is a new mixed oxide perovskite and has been studied and evaluated the cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs), mainly due to its good compatibility with the electrolyte (CGO) and its high ionic conductivity and electronic in intermediate temperature. In this work, PSFC powders with two different compositions (Pr0,5Sr0,5Fe0,8Cu0,2O3- PSFC5582 and Pr0,5Sr0,5Fe0,6Cu0,4O3-PSFC5564) were synthesized by the citrate method using a new route. The powders obtained were characterized by thermal analysis (Differential Scanning Calorimetry and Thermogravimetry), and the material calcined at 800, 900 and 1000 °C for 5h were analyzed by X-ray diffractometry (XRD), with the Rietveld refinement of the diffraction data and dilatometry. PSFC5582 composite films were obtained by screen printing of powder calcined at 1000 °C. The films were deposited on substrate ceria doped with gadolinia (CGO) and then sintered at 1050 °C for 2h. The electrochemical performance of the electrodes was evaluated by impedance spectroscopy and the interface electrode/electrolyte was observed by scanning electron microscopy (SEM). The specific resistance area (ASR) was 0.44 Ω.cm² at 800 °C, slightly lower than those reported in the literature for cathodes containing cobalt. The thermal expansion coefficients of both the PSFC compositions were obtained and varied between 13 and 15 x 10-6 °C-1 , in a temperature range of 200 to 650 °C, demonstrating the good thermal compatibility of cathodes with Ce0,9Gd0,1O1,95 electrolytes (CET = 12 x 10-6 °C).
Resumo:
Composite NiO-C0.9Gd0.1O1.95 (NiO-GDC), one of the materials most used for the manufacture of anodes of Cells Solid Oxide Fuel (SOFC) currently, were obtained by a chemical route which consists in mixing the precursor solution of NiO and CGO phases obtained previously by the Pechini method. The nanopowders as-obtained were characterized by thermal analysis techniques (thermogravimetry and Differential Scanning Calorimetry) and calcined materials were evaluated by X-ray diffraction (XRD). Samples sintered between 1400 and 1500 ° C for 4 h were characterized by Archimedes method. The effects of the composition on the microstructure and electrical properties (conductivity and activation energy) of the composites sintered at 1500 ° C were investigated by electron microscopy and impedance spectroscopy (between 300 and 650 ° C in air). The refinement of the XRD data indicated that the powders are ultrafine and the crystallite size of the CGO phase decreases with increasing content of NiO. Similarly, the crystallite of the NiO phase tends to decrease with increasing concentration of CGO, especially above 50 wt % CGO. Analysis by Archimedes shows a variation in relative density due to the NiO content. Densities above 95% were obtained in samples containing from 50 wt % NiO and sintered between 1450 and 1500 °C. The results of microscopy and impedance spectroscopy indicate that from 30-40 wt.% NiO there is an increase in the number of contacts NiO - NiO, activating the electronic conduction mechanism which governs the process of conducting at low temperatures (300 - 500 °C). On the other hand, with increasing the measuring temperature the mobility of oxygen vacancies becomes larger than that of the electronic holes of NiO, as a result, the high temperature conductivity (500-650 ° C) in composites containing up to 30-40 wt.% of NiO is lower than that of CGO. Variations in activation energy confirm change of conduction mechanism with the increase of the NiO content. The composite containing 50 wt. % of each phase shows conductivity of 19 mS/cm at 650 °C (slightly higher than 13 mS/cm found for CGO) and activation energy of 0.49 eV.
Resumo:
This work describes the synthesis and study of the application of a new surfactant (Triester Lipophilic – TEL) obtained by citric acid with octanol. It is reaction was followed by thin layer chromatography (TLC) and after purification the product was characterized by proton and 13 – carbon nuclear magnetic resonance spectroscopy ( H and 13C NMR), thermogravimetric analysis (TGA) and surface tension analysis of oil-in-water emulsions. The TEL performance as surfactant in ester, n-paraffin and biodiesel based drilling fluids on the 70/30 and 60/40 water- oil rations (WOR) was evaluated by comparative tests of two commercial products used in the fields. These drilling fluids were aged in roller oven at 200 0 F during 16 h. The rheological and electric stability measurements were carried out at 135 ºF, the phase separation was evaluated after seven days at rest and the filtrate volume of drilling fluids was determined at high temperature and high pressure. The rheological behavior of the drilling fluids was evaluated by the flow curves. The results showed that the drilling fluids studied here presented Binghamian behavior as well as the used in the oil fields. The laboratory tests showed that the TEL reduced the filtrate volume and promoted the enhance of the thermal and mechanical stabilities.
Resumo:
Synthesis of heterocyclic compounds, as quinoxaline derivatives, has being shown to be relevant and promissor due to expressive applications in biological and technological areas. This work was dedicated to the synthesis, characterization and reactivity of quinoxaline derivatives in order to obtain new chemosensors. (L)-Ascorbic acid (1) and 2,3-dichloro-6,7- dinitroquinoxalina (2) were explored as synthetic precursors. Starting from synthesis of 1 and characterization of compounds derived from (L)-ascorbic acid, studies were performed investigating the application of products as chemosensors, in which compound 36 demonstrated selective affinity for Cu2+ íons in methanolic solution, by naked-eye (colorimetric) and UVvisible analyses. Further, initial analysis suggests that 39 a Schiff’s base derived from 36 also presents this feature. Five quinoxaline derivatives were synthesized from building block 2 through nucleophilic aromatic substitution by aliphatic amines, in which controlling the experimental conditions allows to obtain both mono- and di-substituted derivatives. Reactivity studies were carried out with two purposes: i) investigate the possibility of 47 compound being a chemosensor for anion, based on its interaction with sodium hydroxide in DMSO, using image analysis and UV-visible spectroscopy; ii) characterize kinetically the conversion of compound 44 into 46 based on RGB and multivariate image analysis from TLC data, as a simple and inexpensive qualitative and quantitative tool.
Resumo:
In this paper a synthesis parameters study was conducted in order to optimize the obteinment of MCM-22 (MWW structure) and increase its accessibility, getting higher external surface and generating mesopores. Syntheses with Si / Al = 15 and Si / Al = 50 ratios were performed under static conditions at different temperatures and with seeds induction, which resulted in MCM-22 pure and crystalline (Si / Al ratio = 15) after 3 days and Si / Al = 50 after 11 days. The reduction of hexamethyleneimine content (HMI) was studied in the stirring synthesis and a HMI reduction of 47% was possible through the mother liquor reuse, in addition, a specific area of 481 m² / g has been obtained in the fourth synthesis day. Regarding the increase of accessibility of the MCM-22 zeolite skeins of MCM-22 plates with about 2 μm were obtained, through the use of dissolved silica, addition of seeds, increased temperature and synthesis time of 2 days. A significant value of specific area was found for this material, around 500 m² / g. Also with respect to the increase of MCM-22 accessibility, treatment with oxalic acid concentration of 0.5 mol / L and silanization of proto-zeolitic units resulted in the mesopores formation . Furthermore, silanization still favored reduction of 70 % in crystal size and a specific area of 566 m² / g.
Resumo:
Nanoparticles are importante for the study of new phenomena and for the development of new applications. Metallic magnetic nanoparticles like Cobalt and Nickel are important for their applications in nanoscience and nanotechnology. In this work, we report on the synthesis and characterization of Ni and Co nanoparticles. The nanoparticles were prepared by the modi- ed sol-gel method and were formed in the pore-network of the biopolymer quitosan. The reduction occurred in absence of H2 ux. The metallic particles and their monoxides have a face-centered- cubic structure. The metallic particles sizes ranged from 59 to 77 nm and from 19 to 50 nm for Ni and Co, respectively. Their monoxides chemically passivated the metallic cores, and after several weeks we have not observed further increase in oxidation. The synthesis method was tuned to obtain mainly the ferromagnetic phase. The system behaves like a core/shell structure with a ferromagnetic core and an antiferromagnetic shell. Exchange bias e ect was observed at temperatures below the Néel temperature. Both systems were submitted to an alternated magnetic eld and the heat released by the particles increased the temperature to 140°C in an interval of 5 min. Similar studies in samples dispersed in water increased the temperatures to 40-59°C, these results suggest that these materials are candidates for magnetic hyperthermia.
Resumo:
This work shows that the synthesis by combustion is a prominent alternative to obtain ceramic powders of higher oxides, nanostructured and of high purity, as the ferrites of formulas Co(1-x)Zn(x)Fe2O4 e Ni(1-x)Zn(x)Fe2O4 with x ranging from 0.2 mols, in a range from 0.2 ≤ x ≥ 1.0 mol, that presents magnetic properties in coexistence of ferroelectric and ferrimagnetic states, which can be used in antennas of micro tapes and selective surfaces of low frequency in a range of miniaturized microwaves, without performance loss. The obtainment occurred through the combustion process, followed by appropriate physical processes and ordered to the utilization of the substrate sinterization process, it gave us a ceramic material, of high purity degree in a nanometric scale. The Vibrating Sample Magnetometer (VSM) analysis showed that those ferritic materials presents parameters, as materials hysteresis, that have own behavior of magnetic materials of good quality, in which the magnetization states can be suddenly changed with a relatively small variation of the field intensity, having large applications on the electronics field. The X-ray Diffraction (XRD) analysis of the ceramic powders synthesized at 900 °C, characterize its structural and geometrical properties, the crystallite size and the interplanar spacing. Other analysis were developed, as Scanning Electron Microscopy (SEM), X-ray Fluorescence (XRF), electric permittivity and the tangent loss, in high frequencies, through the equipment ZVB - 14 Vector Network Analyzer 10 MHz-14 GHz, of ROHDE & SCHWART.
Resumo:
The cobalt-manganese ferrites (Co1¡xMnxFe2O4 and Co1,2Fe1,8¡xMnxO4) has a mixed structure of spinel type and it has been regarded as one of candidates for petitive wide variety of applications in devices from ultrasonic generation and detection, sensors, transformers, as well as in medical industry. Ferrites cobalt-manganese nanostructured were produced via mechanical alloying with subsequent heat treatment and were characterized by X-ray diffraction, X-ray fluorescence, scanning electron microscopy and magnetization. Samples of Co1¡xMnxFe2O4 and Co1,2Fe1,8¡xMnxO4 were obtained from the precursor powders Fe3O4, Co3O4 and Mn3O4 which were stoichiometrically mixed and ground by 10h and heat treated at 900°C for 2h. The diffraction confirmed the formation of the pure nanocrystalline phases to series Co1,2Fe1,8¡xMnxO4 with an average diameter of about 94nm. It was found that the lattice parameter increases with the substitution of Fe3Å by Mn3Å. The x-ray fluorescence revealed that the portions of metals in samples were close to the nominal stoichiometric compositions. The microstructural features observed in micrographs showed that the particles formed show very different morphology and particle size. The magnetic hysteresis measurements performed at low temperature showed that the saturation magnetization and remanence increased as the concentration of manganese, while the coercive field decreased. The anisotropy constant (Ke f ), was estimated from the data adjustments the law of approaching saturation. It was found that the anisotropy decreases substantially with the substitution of Fe by Mn.
Resumo:
Were synthesized in this work in the following aqueous solution coordination compounds: [Ni(LDP)(H2O)2Cl2].2H2O, [Co(LDP)Cl2].3H2O, [Ni(CDP)Cl2].4H2O, [Co(CDP)Cl2].4H2O, [Ni(BDZ)2Cl2].4H2O and [Co(BDZ)2Cl2(H2O)2]. These complexes were synthesized by stoichiometric addition of the binder in the respective metal chloride solutions. Precipitation occurred after drying the solvent at room temperature. The characterization and proposed structures were made using conventional analysis methods such as elemental analysis (CHN), absorption spectroscopy in the infrared Fourier transform spectroscopy (FTIR), X-ray diffraction by the powder method and Technical thermoanalytical TG / DTG (thermogravimetry / derivative thermogravimetry) and DSC (differential scanning calorimetry). These techniques provided information on dehydration, coordination modes, thermal performance, composition and structure of the synthesized compounds. The results of the TG curve, it was possible to establish the general formula of each compound synthesized. The analysis of X-ray diffraction was observed that four of the synthesized complex crystal structure which does not exhibit the complex was obtained from Ldopa and carbidopa and the complex obtained from benzimidazole was obtained crystal structures. The observations of the spectra in the infrared region suggested a monodentate ligand coordination to metal centers through its amine group for all complexes. The TG-DTG and DSC curves provide important information and on the behavior and thermal decomposition of the synthesized compounds. The molar conductivity data indicated that the solutions of the complexes formed behave as a nonelectrolyte, which implies that chlorine is coordinated to the central atom in the complex.
Resumo:
Were synthesized in this work in the following aqueous solution coordination compounds: [Ni(LDP)(H2O)2Cl2].2H2O, [Co(LDP)Cl2].3H2O, [Ni(CDP)Cl2].4H2O, [Co(CDP)Cl2].4H2O, [Ni(BDZ)2Cl2].4H2O and [Co(BDZ)2Cl2(H2O)2]. These complexes were synthesized by stoichiometric addition of the binder in the respective metal chloride solutions. Precipitation occurred after drying the solvent at room temperature. The characterization and proposed structures were made using conventional analysis methods such as elemental analysis (CHN), absorption spectroscopy in the infrared Fourier transform spectroscopy (FTIR), X-ray diffraction by the powder method and Technical thermoanalytical TG / DTG (thermogravimetry / derivative thermogravimetry) and DSC (differential scanning calorimetry). These techniques provided information on dehydration, coordination modes, thermal performance, composition and structure of the synthesized compounds. The results of the TG curve, it was possible to establish the general formula of each compound synthesized. The analysis of X-ray diffraction was observed that four of the synthesized complex crystal structure which does not exhibit the complex was obtained from Ldopa and carbidopa and the complex obtained from benzimidazole was obtained crystal structures. The observations of the spectra in the infrared region suggested a monodentate ligand coordination to metal centers through its amine group for all complexes. The TG-DTG and DSC curves provide important information and on the behavior and thermal decomposition of the synthesized compounds. The molar conductivity data indicated that the solutions of the complexes formed behave as a nonelectrolyte, which implies that chlorine is coordinated to the central atom in the complex.
Resumo:
This thesis presents the synthesis, characterization and study of the associative behaviour in aqueous media of new responsive graft copolymers, based on carboxymethylcellulose as the water-soluble backbone and Jeffamine® M-2070 e Jeffamine® M-600 (commercial polyetheramines) as the thermoresponsive grafts with high cloud point temperatures in water. The synthesis was performed on aqueous medium, by using 1-ethyl-3- (3-(dimethylamino)-propyl)carbodiimide hydrochloride and N-hydroxysuccinimide as activators of the reaction between carboxylategroupsfrom carboxymethylcellulose and amino groups from polyetheramines. The grafting reaction was confirmed by infrared spectroscopy and the grafting percentage by 1H NMR. The molar mass of the polyetheramines was determined by 1H NMR, whereas the molar mass of CMC and graft copolymers was determined by static light scattering. The salt effect on the association behaviour of the copolymers was evaluated in different aqueous media (Milli-Q water, 0.5M NaCl, 0.5M K2CO3 and synthetic sea water), at different temperatures, through UV-vis, rheology and dynamic light scattering. None of the copolymers solutions, at 5 g/L, turned turbid in Milli-Q water when heated from 25 to 95 °C, probably because of the increase in hydrophibicity promoted by CMC backbone. However, they became turbid in the presence of salts, due to the salting out effect, where the lowest cloud point was observed in 0.5M K2CO3, which was attributed to the highest ionic strength in water, combined to the ability of CO3 2- to decrease polymer-solvents interactions. The hydrodynamic radius and apparent viscosity of the copolymers in aqueous medium changed as a function of salts dissolved in the medium, temperature and copolymer composition. Thermothickening behaviour was observed in 0.5M K2CO3 when the temperature was raised from 25 to 60°C. This performance can be attributed to intermolecular associations as a physical network, since the temperature is above the cloud point of the copolymers in this solvent.
Resumo:
The theoretical recital of the present study it is initiated of the evidence that the work occupies an important space in the man s life in way that the majority of the people works and passes great part of its time inside organizati ons. However, it is verified that the relation between man and work is becoming increasingly disagreement a time that the employees had started to complain work s routines, stress, not use all their potential and inadequate work s conditions. It can be observed by the way of Dejours (1994) studies. Thus, as contribution for the quality of work life s (QWL) studies the research developed here objectified to characterize the public employees quality of work life at EMATER -RN taking as reference an instrumen t of research synthesized from the typical academic literature of the subject. The synthesis of an ampler instrument is a necessity not taken care to the literature that treats on the subject but already perceived by some studies like Moraes et al (1990); Rodrigues (1989); Siqueira & Coleta (1989); Moraes et al (1992); Carvalho & Souza (2003); El -Aouar & Souza (2003) and Mourão, Kilimnick & Fernandes (2005); Adorno, Marques & Borges (2005) amongst others. These studies point out weak points of the existing models in the QWL s literature, as well as they recommend the elaboration of a model more flexible, that contemplates Brazilian cultural characteristics, and that contemplates the entire variable studied in the main existing models. For reach this objectiv e the adopted methodology was characterized as a case study with collected data in qualitative and quantitative way. Questionnaires and comments had been used as sources of evidences. These evidences had been tabulated through of statistical package SPSS ( Statistical Package for Social Science), in which the main technique of multivariate analysis used were the factorial analysis. As for the gotten results, it was verified the grouping of the quality of work life s indicators in 11 factors which are: Work s execution, Individual accomplishment, Work s equity, Relation individual and organization, Work s organization, Adequacy of the remuneration, Relation between head and subordinate, Effectiveness of the communication and the learning, Relation between work and personal life, Participation and Effectiveness of the work processes. Whatever to the characterization of the EMATER -RN s quality of work life it was clearly that to the measure that the satisfaction s evaluation with the QWL in the organization walks to intrinsic factors for extrinsic factors this level of satisfaction goes diminishing what points to the importance to improve these extrinsic factors in the institution. In summary it is possible to conclude that the organization studied has offered a significant set of referring variable to the quality of work life of the individual