136 resultados para propriedades físicoquímicas
Resumo:
The development of products whose purpose is to promote blockages in high permeability zones as well as to control the hydrate or scale formation also needs some tests in porous media before using the product in the field, where attempts and unavoidable operational errors costs would able to derail any projects. The aim of this study was to analyze and compare the Botucatu and Berea sandstones properties, involving problems related to loss permeability. It was observed that even cores of Berea, without expansible clays in their composition had their permeability reduced, as soon as the salinity of brine reached a lower limit. As expected, the same happened with the Botucatu sandstone samples, however, in this case, the sensitivity to low salinity was more pronounced. In a second phase, the research was focused on the Botucatu Sandstone behavior front of dilute polymer solutions injection, checking the main relationships between the Rock / Fluid interactions, considering the Mobility Reduction, Resistance and Residual Resistance Factors, as well as adsorption/desorption processes of these polymers, and the polymer molecules average size and porous sandstone average size ratio. The results for both phases showed a real feasibility of using the Botucatu sandstone in laboratory tests whose objective is the displacement of fluids through porous media
Resumo:
Chitosan is a biopolymer derived from the shells of crustaceans, biodegradable, inexpensive and renewable with important physical and chemical properties. Moreover, the different modifications possible in its chemical structure generate new properties, making it an attractive polysaccharide owing to its range of potential applications. Polymers have been used in oil production operations. However, growing concern over environmental constraints has prompted oil industry to search for environmentally sustainable materials. As such, this study sought to obtain chitosan derivatives grafted with hydrophilic (poly(ethylene glycol), mPEG) and/or hydrophobic groups (n-dodecyl) via a simple (one-pot) method and evaluate their physicochemical properties as a function of varying pH using rheology, small-angle Xray scattering (SAXS), dynamic light scattering (DLS) and zeta potential. The chitosan derivatives were prepared using reductive alkylation under mild reaction conditions and the chemical structure of the polymers was characterized by nuclear magnetic resonance (1H NMR) and CHN elemental analysis. Considering a constant mPEG/Chitosan molar ratio on modification of chitosan, the solubility of the polymer across a wide pH range (acidic, neutral and basic) could only be improved when some of the amino groups were submitted to reacetylation using the one-pot method. Under these conditions, solubility is maintained even with the simultaneous insertion of n-dodecyl. On the other hand, the solubility of derivatives obtained only through mPEG incorporation using the traditional methodology, or with the ndodecyl group, was similar to that of its precursor. The hydrophilic group promoted decreased viscosity of the polymer solutions at 10 g/L in acid medium. However, at basic pH, both viscosity and thermal stability increased, as well as exhibited a pronounced pseudoplastic behavior, suggesting strong intermolecular associations in the alkaline medium. The SAXS results showed a polyelectrolyte behavior with the decrease in pH for the polymer systems. DLS analyses revealed that although the dilute polymer solutions at 1 g/L and pH 3 exhibited a high density of protonated amino groups along the polymer chain, the high degree of charge contributed significantly to aggregation, promoting increased particle size with the decrease in pH. Furthermore, the hydrophobic group also contributed to increasing the size of aggregates in solution at pH 3, whereas the hydrophilic group helped reduce their size across the entire pH range. Nevertheless, the nature of aggregation was dependent on the pH of the medium. Zeta potential results indicated that its values do not depend solely on the surface charge of the particle, but are also dependent on the net charge of the medium. In this study, water soluble associative polymers exhibit properties that can be of great interest in the petroleum industry
Resumo:
Sustainable development is a major challenge in the oil industry and has aroused growing interest in research to obtain materials from renewable sources. Carboxymethylcellulose (CMC) is a polysaccharide derived from cellulose and becomes attractive because it is water-soluble, renewable, biodegradable and inexpensive, as well as may be chemically modified to gain new properties. Among the derivatives of carboxymethylcellulose, systems have been developed to induce stimuli-responsive properties and extend the applicability of multiple-responsive materials. Although these new materials have been the subject of study, understanding of their physicochemical properties, such as viscosity, solubility and particle size as a function of pH and temperature, is still very limited. This study describes systems of physical blends and copolymers based on carboxymethylcellulose and poly (N-isopropylacrylamide) (PNIPAM), with different feed percentage compositions of the reaction (25CMC, 50CMC e 75CMC), in aqueous solution. The chemical structure of the polymers was investigated by infrared and CHN elementary analysis. The physical blends were analyzed by rheology and the copolymers by UV-visible spectroscopy, small-angle X-ray scattering (SAXS), dynamic light scattering (DLS) and zeta potential. CMC and copolymer were assessed as scale inhibitors of calcium carbonate (CaCO3) using dynamic tube blocking tests and chemical compatibility tests, as well as scanning electron microscopy (SEM). Thermothickening behavior was observed for the 50 % CMC_50 % PNIPAM and 25 % CMC_75 % PNIPAM physical blends in aqueous solution at concentrations of 6 and 2 g/L, respectively, depending on polymer concentration and composition. For the copolymers, the increase in temperature and amount of PNIPAM favored polymer-polymer interactions through hydrophobic groups, resulting in increased turbidity of polymer solutions. Particle size decreased with the rise in copolymer PNIPAM content as a function of pH (3-12), at 25 °C. Larger amounts of CMC result in a stronger effect of pH on particle size, indicating pH-responsive behavior. Thus, 25CMC was not affected by the change in pH, exhibiting similar behavior to PNIPAM. In addition, the presence of acidic or basic additives influenced particle size, which was smaller in the presence of the additives than in distilled water. The results of zeta potential also showed greater variation for polymers in distilled water than in the presence of acids and bases. The lower critical solution temperature (LCST) of PNIPAM determined by DLS corroborated the value obtained by UV-visible spectroscopy. SAXS data for PNIPAM and 50CMC indicated phase transition when the temperature increased from 32 to 34 °C. A reduction in or absence of electrostatic properties was observed as a function of increased PNIPAM in copolymer composition. Assessment of samples as scale inhibitors showed that CMC performed better than the copolymers. This was attributed to the higher charge density present in CMC. The SEM micrographs confirmed morphological changes in the CaCO3 crystals, demonstrating the scale inhibiting potential of these polymers
Resumo:
Amenities value provided by green areas, sea, river and natural landscapes are hardly perceived and incorporated on urban planning and development. In this work, distance and view to protected and non-protected green areas, sea and river were evaluated as to how they increase the housing prices in Natal. Hedonic pricing methods were used with linear models to estimate the marginal implicit value of environmental, residential and neighborhood features. Results on Chapter 1 demonstrate the view to the sea and protected natural areas were largely capitalized on housing prices, while non-protected natural areas didn t display such effect. Housing prices also increase when close to the sea or to parks entrance. However, housing prices fall when houses are near non-protected natural areas. When estates with sea view were excluded, the protected natural areas view and a longer distance to non-protected natural areas increased dwelling prices. Results on Chapter 2 point the sea view as an hedonic variable the contributes strongly to the property selling prices, even though not always as the greatest contributor; furthermore, the property proximity to Dunas Park or City of the Park entrance increases its price, as does closeness to Dunas Park, view to City of the Park or Dunas Park. On the other hand, selling prices diminish if properties are close to City of the Park or Morro do Careca. Results on this study confirm the hedonic pricing methods is an important intrument, capable of revealing to popullation the importance of enviromental amenities and can be used by public managers for creating public policies for conservation and restoration projects
Resumo:
ROTATION is one the most important aspects to be observed in stellar astrophysics. Here we investigate that particularly in stars with planets. This physical parameter supplies information about the distribution of angular momentum in the planetary system, as well as its role on the control of dierent phenomena, including coronal and cromospherical emission and on the ones due of tidal effects. In spite of the continuous solid advances made on the study of the characteristics and properties of planet host stars, the main features of their rotational behavior is are not well established yet. In this context, the present work brings an unprecedented study about the rotation and angular momentum of planet-harbouring stars, as well as the correlation between rotation and stellar and planetary physical properties. Our analysis is based on a sample of 232 extrasolar planets, orbiting 196 stars of dierent luminosity classes and spectral types. In addition to the study of their rotational behavior, the behavior of the physical properties of stars and their orbiting planets was also analyzed, including stellar mass and metallicity, as well as the planetary orbital parameters. As main results we can underline that the rotation of stars with planets present two clear features: stars with Tef lower than about 6000 K have slower rotations, while among stars with Tef > 6000 K we and moderate and fast rotations, though there are a few exceptions. We also show that stars with planets follow mostly the Krafts law, namely < J > / v rot. In this same idea we show that the rotation versus age relation of stars with planets follows, at least qualitatively, the Skumanich and Pace & Pasquini laws. The relation rotation versus orbital period also points for a very interesting result, with planet-harbouring stars with shorter orbital periods present rather enhanced rotation
Resumo:
In this work we study, for two different growth directions, multilayers of nanometric magnetic metallic lms grown, using Fibonacci sequences, in such a way that the thickness of the non-magnetic spacer may vary from a pair of lms to another. We applied a phenomenological theory that uses the magnetic energy to describe the behavior of the system. After we found numerically the global minimum of the total energy, we used the equilibrium angles to obtain magnetization and magnetoresistance curves. Next, we solved the equation of motion of the multilayers to nd the dispersion relation for the system. The results show that, when spacers are used with thickness so that the biquadratic coupling is strong in comparison to the bilinear one, non usual behaviors for both magnetization and magnetoresistance are observed. For example, a dependence on the parity of the Fibonacci generation utilized for constructing the system, a low magnetoresistance step in low external magnetic fields and regions that show high sensibility to small variations of the applied field. Those behaviors are not present in quasiperiodic magnetic multilayers with constant spacer thickness
Resumo:
The diffusive epidemic process (PED) is a nonequilibrium stochastic model which, exhibits a phase trnasition to an absorbing state. In the model, healthy (A) and sick (B) individuals diffuse on a lattice with diffusion constants DA and DB, respectively. According to a Wilson renormalization calculation, the system presents a first-order phase transition, for the case DA > DB. Several researches performed simulation works for test this is conjecture, but it was not possible to observe this first-order phase transition. The explanation given was that we needed to perform simulation to higher dimensions. In this work had the motivation to investigate the critical behavior of a diffusive epidemic propagation with Lévy interaction(PEDL), in one-dimension. The Lévy distribution has the interaction of diffusion of all sizes taking the one-dimensional system for a higher-dimensional. We try to explain this is controversy that remains unresolved, for the case DA > DB. For this work, we use the Monte Carlo Method with resuscitation. This is method is to add a sick individual in the system when the order parameter (sick density) go to zero. We apply a finite size scalling for estimates the critical point and the exponent critical =, e z, for the case DA > DB
Resumo:
Samples of lanthanum Ortoferrites doped with strontium were synthesized in a single phase by the sol-gel method. Two samples were prepared, one by varying the concentration of strontium in lanthanum ortoferrites La1−xSrxFeO3−δ with (0 ≤ x ≤ 0.5), and another batch of samples of type, La1/3Sr2/3FeO3−δ, now varying only the temperature of calcination. Our samples were obtained by Pechini method and sintered in air and oxygen atmospheric. Their crystal structures were determined by x-ray diraction (XRD), scanning electron microscopy (SEM), where we observed that the samples (0 ≤ x ≤ 0.3) have orthorhombic symmetry and the volume of the single cell decreases with the increasing of concentration of strontium. For x = 0.5 it is only observed the simple phase when that is sintered in O2 atmospheric. Their magnetic characteristics were obtained by the Mössbauer spectroscopy and magnetic measurements. The magnetization measurements for samples La1−xSrxFeO3−δ with (0 ≤ x ≤ 0.5) revealed that the magnetization decreases with increasing concentration of strontium, but for the sample x = 0.4 the magnetization shows a high coercive field and a ferrimagnetic behavior, which is attributed to a small amount of strontium hexaferrite. As for the samples La1/3Sr2/3FeO3−δ calcined between 800 oC e 1200 oC. The hysteresis curves revealed two distinct behaviors: an declined antiferromagnetic behavior (Canted) for samples calcined between 800 oC and 1000 oC and a paramagnetic behavior for the samples calcined at 1100 oC e 1200 o C. Thermal hysteresis and sharp peaks around the Néel temperature (TN), over the curves of specific heat as a function of temperature was only observed in calcined samples with 1100 oC and 1200 oC. This eect is attributed to the charge ordering. These results indicate that the charge ordering occurs only in the samples without oxygen deficiency. Magnetic measurements as a function of temperature are also in agreement with this interpretation
Resumo:
The ferromagnetic materials play an important role in the development of various electronic devices and, have great importance insofar as they may determine the efficiency, cost and, size of the devices. For this reason, many scientific researches is currently focused on the study of materials at ever smaller scales, in order to understand and better control the properties of nanoscale systems, i.e. with dimensions of the order of nanometers, such as thin film ferromagnetic. In this work, we analyze the structural and magnetic properties and magnetoresistance effect in Permalloy-ferromagnetic thin films produced by magnetron sputtering. In this case, since the magnetoresistance effect dependent interfaces of thin films, this work is devoted to the study of the magnetoresistance in samples of Permalloy in nominal settings of: Ta[4nm]/Py[16nm]/Ta[4nm], Ta[4nm]/Py[16nm]/O2/Ta[4nm], Ta[4nm]/O2/Py[16nm]/Ta[4nm], Ta[4nm]/O2/Py[16n m]/O2/Ta[4nm], as made and subjected to heat treatment at temperatures of 160ºC, 360ºC e 460ºC, in order to verify the influence of the insertion of the oxygen in the layer structure of samples and thermal treatments carried out after production of the samples. Results are interpreted in terms of the structure of the samples, residual stresses stored during deposition, stresses induced by heat treatments and magnetic anisotropies
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
We use a tight-binding formulation to investigate the transmissivity and the currentvoltage (I_V) characteristics of sequences of double-strand DNA molecules. In order to reveal the relevance of the underlying correlations in the nucleotides distribution, we compare theresults for the genomic DNA sequence with those of arti_cial sequences (the long-range correlated Fibonacci and RudinShapiro one) and a random sequence, which is a kind of prototype of a short-range correlated system. The random sequence is presented here with the same _rst neighbors pair correlations of the human DNA sequence. We found that the long-range character of the correlations is important to the transmissivity spectra, although the I_V curves seem to be mostly inuenced by the short-range correlations. We also analyze in this work the electronic and thermal properties along an _-helix sequence obtained from an _3 peptide which has the uni-dimensional sequence (Leu-Glu-Thr- Leu-Ala-Lys-Ala)3. An ab initio quantum chemical calculation procedure is used to obtain the highest occupied molecular orbital (HOMO) as well as their charge transfer integrals, when the _-helix sequence forms two di_erent variants with (the so-called 5Q variant) and without (the 7Q variant) _brous assemblies that can be observed by transmission electron microscopy. The di_erence between the two structures is that the 5Q (7Q) structure have Ala ! Gln substitution at the 5th (7th) position, respectively. We estimate theoretically the density of states as well as the electronic transmission spectra for the peptides using a tight-binding Hamiltonian model together with the Dyson's equation. Besides, we solve the time dependent Schrodinger equation to compute the spread of an initially localized wave-packet. We also compute the localization length in the _nite _-helix segment and the quantum especi_c heat. Keeping in mind that _brous protein can be associated with diseases, the important di_erences observed in the present vi electronic transport studies encourage us to suggest this method as a molecular diagnostic tool
Resumo:
In this work we have developed a way to grow Fe/MgO(100) monocrystals by magnetron sputtering DC. We investigated the growing in a temperature range among 100 oC and 300 oC. Structural and magneto-crystalline properties were studied by different experimental techniques. Thickness and surface roughness of the films were investigated by atomic force microscopy, while magneto-crystalline properties were investigated by magneto-optical Kerr effect and ferromagnetic resonance. Our results show that as we increase the deposition temperature, the magneto-crystalline anisotropy of the films also increases, following the equation of Avrami. The best temperature value to make a film is 300 oC. As the main result, we built a base of magnetoresistence devices and as an aplication, we present measurements of Fe/Cr/Fe trilayer coupling. In a second work we investigated the temperature dependence of the first three interlayer spacings of Ag(100) surface using low energy electron diffraction. A linear expansion model of crystal surface was used and the values of Debye temperatures of the first two layers and thermal expansion coefficient were determinated. A relaxation of 1% was found for Ag(100) surface and these results are matched with faces (110) and (111) of the silver. iv
Resumo:
In this work we present a study for the structural, electronic and optical properties, at ambient conditions of SrSnO3, SrxBa1
Resumo:
In this thesis, we study the thermo-electronic properties of the DNA molecule. For this purpose, we used three types of models with the DNA, all assuming a at geometry (2D), each built by a sequence of quasiperiodic (Fibonacci and / or Rudin-Shapiro) and a sequence of natural DNA, part of the human chromosome Ch22. The first two models have two types of components that are the nitrogenous bases (guanine G, cytosine C, adenine A and thymine T) and a cluster sugar-phosphate (SP), while the third has only the nitrogenous bases. In the first model we calculate the density of states using the formalism of Dyson and transmittance for the time independent Schr odinger equation . In the second model we used the renormalizationprocedure for the profile of the transmittance and consequently the I (current) versus V (voltage). In the third model we calculate the density of states formalism by Dean and used the results together with the Fermi-Dirac statistics for the chemical potential and the quantum specific heat. Finally, we compare the physical properties found for the quasi-periodic sequences and those that use a portion of the genomic DNA sequence (Ch22).
Resumo:
Objetivo: Traduzir e avaliar as propriedades psicométricas do Mobility Assessment Tool Physical Activity (MAT-PA) em idosos comunitários brasileiros. Métodos: Trata-se de um estudo tradução, adaptação cultural, e acurácia do instrumento MAT-PA, no qual foram avaliados 329 idosos, com idade mínima de 60 anos, residentes na comunidade. Os indivíduos submeteram-se a um formulário de avaliação composto por: questionário sócio-demográfico e de saúde percebida; avaliação física; Prova Cognitiva de Leganés (PCL); Center for Epidemiologic Studies Depression Scale (CES-D); International Physical Activity Questionnaire (IPAQ); Mobility Assessment Tool Physical Activity (MAT-PA). Dessa amostra total, 42 idosos utilizaram o acelerômetro durante 8 dias. Para verificar a confiabilidade teste-reteste do MAT-PA, reaplicou-se esse instrumento em 34 idosos 8 dias após a primeira avaliação. A análise estatística utilizada foi a correlação de Spearman, o Coeficiente de Correlação Intra-classe, o coeficiente α de Cronbach, o Bland-Altman e o teste T pareado. Resultados: As correlações dos dados IPAQ e acelerômetro versus o escore total do MAT-PA foram significativas e apresentaram um coeficiente de correlação de Spearman de 0,13 e 0,41, respectivamente. Analisou-se também a confiabilidade que apresentou as seguintes medidas: consistência interna, pelo coeficiente alfa de Cronbach (α= 0,70); Concordância teste-reteste, pelo coeficiente de correlação intra-classe (CCI=0,53; p<0,001). Conclusão: A versão brasileira do Mobility Assessment Tool Physical Activity (MAT-PA) como um instrumento de avaliação da atividade física de idosos, mostrou ser um método válido e confiável.