126 resultados para Modelagem baseada no indivíduo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

E-learning, which refers to the use of Internet-related technologies to improve knowledge and learning, has emerged as a complementary form of education, bringing advantages such as increased accessibility to information, personalized learning, democratization of education and ease of update, distribution and standardization of the content. In this sense, this paper aims to develop a tool, named ISE-SPL, whose purpose is the automatic generation of E-learning systems for medical education, making use of concepts of Software Product Lines. It consists of an innovative methodology for medical education that aims to assist professors of healthcare in their teaching through the use of educational technologies, all based on computing applied to healthcare (Informatics in Health). The tests performed to validate the ISE-SPL were divided into two stages: the first was made by using a software analysis tool similar to ISE-SPL, called SPLOT and the second was performed through usability questionnaires to healthcare professors who used ISESPL. Both tests showed positive results, proving it to be an efficient tool for generation of E-learning software and useful for professors in healthcare

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a modelling and identification method for a wheeled mobile robot, including the actuator dynamics. Instead of the classic modelling approach, where the robot position coordinates (x,y) are utilized as state variables (resulting in a non linear model), the proposed discrete model is based on the travelled distance increment Delta_l. Thus, the resulting model is linear and time invariant and it can be identified through classical methods such as Recursive Least Mean Squares. This approach has a problem: Delta_l can not be directly measured. In this paper, this problem is solved using an estimate of Delta_l based on a second order polynomial approximation. Experimental data were colected and the proposed method was used to identify the model of a real robot

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The control, automation and optimization areas help to improve the processes used by industry. They contribute to a fast production line, improving the products quality and reducing the manufacturing costs. Didatic plants are good tools for research in these areas, providing a direct contact with some industrial equipaments. Given these capabilities, the main goal of this work is to model and control a didactic plant, which is a level and flow process control system with an industrial instrumentation. With a model it is possible to build a simulator for the plant that allows studies about its behaviour, without any of the real processes operational costs, like experiments with controllers. They can be tested several times before its application in a real process. Among the several types of controllers, it was used adaptive controllers, mainly the Direct Self-Tuning Regulators (DSTR) with Integral Action and the Gain Scheduling (GS). The DSTR was based on Pole-Placement design and use the Recursive Least Square to calculate the controller parameters. The characteristics of an adaptive system was very worth to guarantee a good performance when the controller was applied to the plant

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New versions of SCTP protocol allow the implementation of handover procedures in the transport layer, as well as the supply of a partially reliable communication service. A communication architecture is proposed herein, integrating SCTP with the session initiation protocol, SIP, besides additional protocols. This architecture is intended to handle voice applications over IP networks with mobility requirements. User localization procedures are specified in the application layer as well, using SIP, as an alternative mean to the mechanisms used by traditional protocols, that support mobility in the network layer. The SDL formal specification language is used to specify the operation of a control module, which coordinates the operation of the system component protocols. This formal specification is intended to prevent ambiguities and inconsistencies in the definition of this module, assisting in the correct implementation of the elements of this architecture

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A serious problem that affects an oil refinery s processing units is the deposition of solid particles or the fouling on the equipments. These residues are naturally present on the oil or are by-products of chemical reactions during its transport. A fouled heat exchanger loses its capacity to adequately heat the oil, needing to be shut down periodically for cleaning. Previous knowledge of the best period to shut down the exchanger may improve the energetic and production efficiency of the plant. In this work we develop a system to predict the fouling on a heat exchanger from the Potiguar Clara Camarão Refinery, based on data collected in a partnership with Petrobras. Recurrent Neural Networks are used to predict the heat exchanger s flow in future time. This variable is the main indicator of fouling, because its value decreases gradually as the deposits on the tubes reduce their diameter. The prediction could be used to tell when the flow will have decreased under an acceptable value, indicating when the exchanger shutdown for cleaning will be needed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes a new technique for phasor estimation applied in microprocessor numerical relays for distance protection of transmission lines, based on the recursive least squares method and called least squares modified random walking. The phasor estimation methods have compromised their performance, mainly due to the DC exponential decaying component present in fault currents. In order to reduce the influence of the DC component, a Morphological Filter (FM) was added to the method of least squares and previously applied to the process of phasor estimation. The presented method is implemented in MATLABr and its performance is compared to one-cycle Fourier technique and conventional phasor estimation, which was also based on least squares algorithm. The methods based on least squares technique used for comparison with the proposed method were: forgetting factor recursive, covariance resetting and random walking. The techniques performance analysis were carried out by means of signals synthetic and signals provided of simulations on the Alternative Transient Program (ATP). When compared to other phasor estimation methods, the proposed method showed satisfactory results, when it comes to the estimation speed, the steady state oscillation and the overshoot. Then, the presented method performance was analyzed by means of variations in the fault parameters (resistance, distance, angle of incidence and type of fault). Through this study, the results did not showed significant variations in method performance. Besides, the apparent impedance trajectory and estimated distance of the fault were analysed, and the presented method showed better results in comparison to one-cycle Fourier algorithm

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quadrotors aircraft are composed by four propellers mounted on four engines on a cross or x disposition, and, in this structure, the engines on the same arm spin in the same direction and the other arm in the opposite direction. By rotating each helix generates vertical upward thrust. The control is done by varying the rotational speed of each motor. Among the advantages of this type of vehicle can cite the mechanical simplicity of construction, the high degree of maneuverability and the ability to have vertical takeoffs and landings. The modeling and control of quadrirrotores have been a challenge due to problems such as nonlinearity and coupling between variables. Several strategies have been developed to control this type of vehicle, from the classical control to modern. There are air surveillance applications where a camera is fixed on the vehicle to point forward, where it is desired that the quadrotor moves at a fixed altitude toward the target also pointing forward, which imposes an artificial constraint motion, because it is not desired that it moves laterally, but only forwards or backwards and around its axes . This restriction is similar to the naturally existing on robots powered by wheels with differential drive, which also can not move laterally, due to the friction of the wheels. Therefore, a position control strategy similar to that used in this type of robot could be adapted for aerial robots like quadrotor. This dissertation presents and discusses some strategies for the control of position and orientation of quadrotors found in the literature and proposes a strategy based on dynamic control of mobile robots with differential drive, called the variable reference control. The validity of the proposed strategy is demonstrated through computer simulations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work considers the development of a filtering system composed of an intelligent algorithm, that separates information and noise coming from sensors interconnected by Foundation Fieldbus (FF) network. The algorithm implementation will be made through FF standard function blocks, with on-line training through OPC (OLE for Process Control), and embedded technology in a DSP (Digital Signal Processor) that interacts with the fieldbus devices. The technique ICA (Independent Component Analysis), that explores the possibility of separating mixed signals based on the fact that they are statistically independent, was chosen to this Blind Source Separation (BSS) process. The algorithm and its implementations will be Presented, as well as the results

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work has as main objective the application of Artificial Neural Networks, ANN, in the resolution of problems of RF /microwaves devices, as for example the prediction of the frequency response of some structures in an interest region. Artificial Neural Networks, are presently a alternative to the current methods of analysis of microwaves structures. Therefore they are capable to learn, and the more important to generalize the acquired knowledge, from any type of available data, keeping the precision of the original technique and adding the low computational cost of the neural models. For this reason, artificial neural networks are being increasily used for modeling microwaves devices. Multilayer Perceptron and Radial Base Functions models are used in this work. The advantages/disadvantages of these models and the referring algorithms of training of each one are described. Microwave planar devices, as Frequency Selective Surfaces and microstrip antennas, are in evidence due the increasing necessities of filtering and separation of eletromagnetic waves and the miniaturization of RF devices. Therefore, it is of fundamental importance the study of the structural parameters of these devices in a fast and accurate way. The presented results, show to the capacities of the neural techniques for modeling both Frequency Selective Surfaces and antennas

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes a computational methodology to solve problems of optimization in structural design. The application develops, implements and integrates methods for structural analysis, geometric modeling, design sensitivity analysis and optimization. So, the optimum design problem is particularized for plane stress case, with the objective to minimize the structural mass subject to a stress criterion. Notice that, these constraints must be evaluated at a series of discrete points, whose distribution should be dense enough in order to minimize the chance of any significant constraint violation between specified points. Therefore, the local stress constraints are transformed into a global stress measure reducing the computational cost in deriving the optimal shape design. The problem is approximated by Finite Element Method using Lagrangian triangular elements with six nodes, and use a automatic mesh generation with a mesh quality criterion of geometric element. The geometric modeling, i.e., the contour is defined by parametric curves of type B-splines, these curves hold suitable characteristics to implement the Shape Optimization Method, that uses the key points like design variables to determine the solution of minimum problem. A reliable tool for design sensitivity analysis is a prerequisite for performing interactive structural design, synthesis and optimization. General expressions for design sensitivity analysis are derived with respect to key points of B-splines. The method of design sensitivity analysis used is the adjoin approach and the analytical method. The formulation of the optimization problem applies the Augmented Lagrangian Method, which convert an optimization problem constrained problem in an unconstrained. The solution of the Augmented Lagrangian function is achieved by determining the analysis of sensitivity. Therefore, the optimization problem reduces to the solution of a sequence of problems with lateral limits constraints, which is solved by the Memoryless Quasi-Newton Method It is demonstrated by several examples that this new approach of analytical design sensitivity analysis of integrated shape design optimization with a global stress criterion purpose is computationally efficient

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On this research we investigated how new technologies can help the process of design and manufacturing of furniture in such small manufacturers in Rio Grande do Norte state. Google SketchUp, a 3D software tool, was developed in such a way that its internal structures are opened and can be accessed using SketchUp s API for Ruby and programs written in Ruby language (plugins). Using the concepts of the so-called Group Technology and the flexibility that enables adding new functionalities to this software, it was created a Methodology for Modeling of Furniture, a Coding System and a plugin for Google s tool in order to implement the Methodology developed. As resulted, the following facilities are available: the user may create and reuse the library s models over-and-over; reports of the materials manufacturing process costs are provided and, finally, detailed drawings, getting a better integration between the furniture design and manufacturing process

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Annular flow is the prevailing pattern in transport and energy conversion systems and therefore, one of the most important patterns in multiphase flow in ducts. The correct prediction of the pressure gradient and heat transfer coefficient is essential for optimizing the system s capacity. The objective of this work is to develop and implement a numerical algorithm capable of predicting hydrodynamic and thermal characteristics for upflow, vertical, annular flow. The numerical algorithm is then complemented with the physical modeling of phenomena that occurs in this flow pattern. These are, turbulence, entrainment and deposition and phase change. For the development of the numerical model, axial diffusion of heat and momentum is neglected. In this way the time-averaged equations are solved in their parabolic form obtaining the velocity and temperature profiles for each axial step at a time, together with the global parameters, namely, pressure gradient, mean film thickness and heat transfer coefficient, as well as their variation in the axial direction. The model is validated for the following conditions: fully-developed laminar flow with no entrainment; fully developed laminar flow with heat transfer, fully-developed turbulent flow with entrained drops, developing turbulent annular flow with entrained drops, and turbulent flow with heat transfer and phase change

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently there is still a high demand for quality control in manufacturing processes of mechanical parts. This keeps alive the need for the inspection activity of final products ranging from dimensional analysis to chemical composition of products. Usually this task may be done through various nondestructive and destructive methods that ensure the integrity of the parts. The result generated by these modern inspection tools ends up not being able to geometrically define the real damage and, therefore, cannot be properly displayed on a computing environment screen. Virtual 3D visualization may help identify damage that would hardly be detected by any other methods. One may find some commercial softwares that seek to address the stages of a design and simulation of mechanical parts in order to predict possible damages trying to diminish potential undesirable events. However, the challenge of developing softwares capable of integrating the various design activities, product inspection, results of non-destructive testing as well as the simulation of damage still needs the attention of researchers. This was the motivation to conduct a methodological study for implementation of a versatile CAD/CAE computer kernel capable of helping programmers in developing softwares applied to the activities of design and simulation of mechanics parts under stress. In this research it is presented interesting results obtained from the use of the developed kernel showing that it was successfully applied to case studies of design including parts presenting specific geometries, namely: mechanical prostheses, heat exchangers and piping of oil and gas. Finally, the conclusions regarding the experience of merging CAD and CAE theories to develop the kernel, so as to result in a tool adaptable to various applications of the metalworking industry are presented

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A critical problem in mature gas wells is the liquid loading. As the reservoir pressure decreases, gas superficial velocities decreases and the drag exerted on the liquid phase may become insufficient to bring all the liquid to the surface. Liquid starts to drain downward, flooding the well and increasing the backpressure which decreases the gas superficial velocity and so on. A popular method to remedy this problem is the Plunger Lift. This method consists of dropping the "plunger"to the bottom of the tubing well with the main production valve closed. When the plunger reaches the well bottom the production valve is opened and the plunger carry the liquid to the surface. However, models presented in literature for predicting the behavior in plunger lift are simplistic, in many cases static (not considering the transient effects). Therefore work presents the development and validation of a numerical algorithm to solve one-dimensional compressible in gas wells using the Finite Volume Method and PRIME techniques for treating coupling of pressure and velocity fields. The code will be then used to develop a dynamic model for the plunger lift which includes the transient compressible flow within the well