75 resultados para Estacas tipo raiz
Resumo:
Volatile Organic Compounds are pollutants coming mainly from activities that use fossil fuels. Within this class are the BTEX (benzene, toluene, ethylbenzene and xylenes) compounds that are considered hazardous. Among the various existing techniques for degradation of pollutants, there is advanced oxidation using H2O2 generating hidoxil radical ( OH). In this work, the mesoporous material of MCM-41 was synthesized by hydrothermal method and then was used as support, the impregnation of titanium by the method of synthesis with excess solvent to obtain the catalyst Ti-MCM-41. The catalyst was used in the reaction catalyzed removal of BTEX in water using H2O2 as oxidant. The materials were characterized by: XRD, TG/DTG, FTIR, nitrogen adsorption-desorption and FRX-EDX, in order to verify the method of impregnation of the mesoporous titanium support was effective. Catalytic tests were carried out in reactors of 20 mL containing BTEX (100.0 μg/L), H2O2 (2.0 M) and Ti-MCM-41 (2.0 g/L) in acid medium. The reaction occurred for 5 h at 60 °C and analysis were performed by gas chromatography with photoionization detector and static headspace sampler. The characterizations have proven the effectiveness of the synthesis method used and the incorporation of titanium lt in the support. The catalytic tests showed satisfactory results with conversion of more than 95 % for the studied compounds, where the catalyst 48% Ti-MCM-41 showed a higher removal efficiency of the compounds under study
Resumo:
The synthesis of MFI-type zeolite membranes was carried by the process in situ or hydrothermal crystallization. We studied the homogenization time of the room temperature and gel filtration just before the crystallization step performed out in an oven, thus obtaining a more uniform zeolite film. The powder synthesized zeolite (structure type MFI, Silicalite) was characterized by several complementary techniques such as Xray diffraction (XRD), scanning electron microscopy (SEM), thermal analysis, temperature programmed desorption (TPD), Fourier Transform infrared spectroscopy (FTIR) and textural analysis by nitrogen adsorption (specific surface area). For the purpose of evaluating the quality of the layer supported on the ceramic support, N2 permeation tests were carried starting from room temperature to 600 °C, where values were observed values more appropriate permeation from 200 °C. With the data obtained, it was made into a graph of temperature versus permeation function, the curve of surface diffusion was found. For scanning electron microscopy, we observed the formation of homogeneous crystals and the zeolite film showed no fissures or cracks, indicating that the process of synthesis and subsequent treatments not damaged the zeolite layer on the support. Carried permeation studies were found values ranging from 3.64x10-6 to 3.78x10-6, 4.71x10-6 to 5.02x10-6, to pressures 20 and 25 psi, respectively. And the mixture xylenes/N2 values were between 5.39x10-6 to 5.67x10-6 and 8.13x10-6 to 8.36x10-6, also for pressures of 20 and 25 psi. The values found for the separation factor were 15.22 at 400 °C in the first experiment and 1.64 for the second experiment at a temperature of 150 °C. It is concluded that the Silicalite membrane was successfully synthesized and that it is effective in the separation of binary mixtures of xylenes
Resumo:
In order to obtain a biofuel similar to mineral diesel, lanthanum-incorporated SBA- 15 nanostructured materials, LaSBA-15(pH), with different Si/La molar ratios (75, 50, 25), were synthesized in a two-steps hydrothermal procedure, with pH-adjusting of the synthesis gel at 6, and were used like catalytic solids in the buriti oil thermal catalytic cracking. These solids were characterized by X-ray fluorescence (XRF), powder X-ray diffraction (XRD), thermogravimetric analysis (TG/DTG), infrared spectroscopy (FTIR), nitrogen porosimetry and ethanol dehydration, aiming to active sites identify. Taken together, the analyses indicated that the synthesis method has employed to obtain materials highly ordered mesostructures with large average pore sizes and high surface area, besides suggested that the lanthanum was incorporated in the SBA-15 both into the framework as well as within the mesopores. Catalytic dehydration of ethanol over the LaSBA-15(pH) products has shown that they have weak Lewis acid and basic functionalities, indicative of the presence of lanthanum oxide in these samples, especially on the La75SBA-15(pH) sample, which has presented the highest selectivity to ethylene. The buriti oil thermal and thermal catalytic cracking, realized from the room temperature to 450 ºC in a simple distillation system, has allowed obtaining two liquid fractions, each consisting of two phases, one aqueous and another organic, organic liquid (OL). The OL obtained from first fractions has shown high acid index, even in the thermal catalytic process. One the other hand, OL coming from second ones, called green diesel (GD), have presented low acid index, particularly that one obtained from the thermal catalytic process realized over LaSBA-15(pH) samples. The acid sites presence in these samples, associated to their large average pore sizes and high surface areas, have allowed them, especially the La75SBA-15(pH), to present deoxygenating activity in the buriti oil thermal catalytic cracking, providing an oxygenates content reduction, particularly carboxylic acids, in the GD. Furthermore, the GD comes from the second liquid fraction obtained in the buriti oil thermal catalytic cracking over this latest solid sample has shown hydrocarbons composition and physic-chemical properties similar to that mineral diesel, beyond sulfur content low
Resumo:
One of the main applications of methane is in the production of syngas, a mixture of hydrogen and carbon monoxide. Procedures used in this process are steam reforming, CO2 reforming, partial oxidation and autothermal reforming. The present study evaluated and compared the behavior of nickel catalysts supported on mixed oxides of cerium and manganese in the partial oxidation of methane with that of nickel catalysts supported on mixed oxides of cerium and zirconium. Mixed oxides of cerium and zirconium or cerium and manganese were synthesized using two different preparation methods, the polymeric precursor based on Pechini method and combustion reaction using a microwave. This was followed by impregnation with nickel content of 15 %. Samples were calcined at 300, 800 and 900 °C and characterized by specific surface area (SSA), X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), temperature programmed reduction (TPR) and the reaction of partial oxidation of methane. The specific areas of samples decrease with the rise in calcination temperature and after nickel impregnation. Metal-cerium solid solution was formed and the presence of other manganese species outside the solid solution structure was confirmed in the compound with the highest amounts of manganese oxides showed. With regard to scanning electron microscopy, supports based on cerium and zirconium prepared by Pechini method exhibited agglomerated particles without uniform geometry or visible pores on the surface. However, compounds containing manganese presented empty spaces in its structure. Through synthesis by combustion reaction, morphology acquired independently of the proposed composition demonstrated greater porosity in relation to Pechini synthesis. Although catalysts were prepared using different synthesis methods, the insertion of nickel showed very similar reduction profiles (TPR). In relation to nickel catalysts supported on mixed oxide of cerium and zirconium, there is an initial reduction of NiO species that present certain interaction with the support. This is followed by the reduction of Ce4+ in Ce3+ surface, with subsequent bulk reduction. For catalysts containing manganese, a reduction of nickel oxide species occurs, followed by two stages of reduction for species Mn2O3 in Mn3O4 and Mn3O4 in MnO, with subsequent reduction of bulk. With respect to partial oxidation reactions, the nickel catalyst supported on mixed oxide of cerium and zirconium, prepared using the Pechini method, exhibited CH4 conversion of approximately 80 %, with conversion of 81 % when prepared by combustion. This behavior continued for 10 hours of reaction. Manganese content was also found to directly influence catalytic activity of materials; the greater the manganese oxide content, the faster deactivation and destabilization occurred in the catalyst. In both synthesis methods, the nickel catalyst supported on mixed oxide of cerium and zirconium maintained an H2/CO ratio very close to 2 during the 10 hours of partial oxidation reaction. Samples containing manganese displayed smaller H2/CO ratios and lower performance in partial oxidation.
Resumo:
Materials consisting of perovskite-type oxides (ABO3) have been developed in this work for applications in fuel cell cathodes of solid oxide type (SOFC). These ceramic materials are widely studied for this type of application because they have excellent electrical properties, conductivity and electrocatalytic. The oxides LaMnO3, LaFeO3, LaFe0.2Mn0.8O3 e La0.5Fe0.5MnO3 were synthesized by the method of microwave assisted combustion and after sintering at 800°C in order to obtain the desired phases. The powders were characterized by thermogravimetry (TG), X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and voltammetric analysis (cyclic voltammetry and polarization curves). The results obtained by XRF technique showed that the microwave synthesis method was effective in obtaining doping oxides with values near stoichiometric. In general, powders were obtained with particle size less than 0.5 μm, having a porous structure and uniform particle size distribution. The particles showed spherical form, irregular and crowded of varying sizes, according to the analysis of SEM. The behavior of the oxides opposite the thermal stability was monitored by thermogravimetric curves (TG), which showed low weight loss values for all samples, especially those of manganese had its structure. By means of Xray diffraction of the samples sintered at 800°C was possible to observe the formation of powders having high levels of crystallinity. Furthermore, undesirable phases such as La2O3 and MnOx were not identified in the diffractograms. These phases block the transport of oxygen ions in the electrode/electrolyte interface, affecting the electrochemical activity of the system. The voltammetric analysis of the electrocatalysts LF-800, LM-800, LF2M8-800 e L5F5M-800 revealed that these materials are excellent electrical conductors, because it increased the passage of electrical current of the working electrode significantly. Best performance for the oxygen reduction reaction was observed with iron-rich structures, considering that the materials obtained have characteristics suitable for use in fuel cell cathodes of solid oxide type
Resumo:
This work reports the synthesis of zeolites with different compositions (pure silica, Si/Ti and Si/Al), via hydroxide and fluoride medium using the cation 1-butyl-3- methylimidazolium as structure directing agent. Initially, the cation was synthesized in chloride form and used for the synthesis in hydroxide medium. An anion-exchange (Cl- for OH-) was required for the synthesis in fluoride medium. Different reactants were used for the formation of gels synthesis, resulting in the crystallization of MFI and TON phases, the latter predominant in many compositions. The cation and synthesized zeolites obtained were characterized by different techniques such as NMR, TG/DTG, XRD, SEM, N2 adsorption and desorption, DRS and EPMA. Besides characterizing the cation and zeolites, the mother liquor of hydroxide synthesis was characterized and it was possible to observe a modification of the cation in the synthesis conditions employed. The materials synthesized in this work can be applied in catalytic reactions and adsorption
Resumo:
In this work were synthesized and characterized the materials mesoporous SBA-15 and Al- SBA-15, Si / Al = 25, 50 and 75, discovered by researchers at the University of California- Santa Barbara, USA, with pore diameters ranging from 2 to 30 nm and wall thickness from 3.1 to 6.4 nm, making these promising materials in the field of catalysis, particularly for petroleum refining (catalytic cracking), as their mesopores facilitate access of the molecules constituting the oil to active sites, thereby increasing the production of hydrocarbons in the range of light and medium. To verify that the materials used as catalysts were successfully synthesized, they were characterized using techniques of X-ray diffraction (XRD), absorption spectroscopy in the infrared Fourier transform (FT-IR) and adsorption nitrogen (BET). Aiming to check the catalytic activity thereof, a sample of atmospheric residue oil (ATR) from the pole Guamaré-RN was performed the process by means of thermogravimetry and thermal degradation of catalytic residue. Upon the curves, it was observed a reduction in the onset temperature of the decomposition process of catalytic ATR. For the kinetic model proposed by Flynn-Wall yielded some parameters to determine the apparent activation energy of decomposition, being shown the efficiency of mesoporous materials, since there was a decrease in the activation energy for the reactions using catalysts. The ATR was also subjected to pyrolysis process using a pyrolyzer with gas chromatography coupled to a mass spectrometer. Through the chromatograms obtained, there was an increase in the yield of the compounds in the range of gasoline and diesel from the catalytic pyrolysis, with emphasis on Al-SBA-15 (Si / Al = 25), which showed a percentage higher than the other catalysts. These results are due to the fact that the synthesized materials exhibit specific properties for application in the process of pyrolysis of complex molecules and high molecular weight as constituents of the ATR
Resumo:
The chemical recycling of polyolefins has been the focus of increasing attention owing potential application as a fuel and as source chemicals. The use of plastic waste contributes to the solution of pollution problems.The use of catalysts can enhance the thermal degradation of synthetic polymers, which may be avaliated by Themogravimetry (TG) and mass spectrometry (MS) combined techniques. This work aims to propose alternatives to the chemistry recycling of low-density polyethylene (LDPE) on mesoporous silica type SBA-15 and AlSBA-15.The mesoporous materials type SBA-15 and AlSBA-15 were synthesized through the hydrothermal method starting from TEOS, pseudobohemite, cloridric acid HCl and water. As structure template was used Pluronic P123. The syntheses were accomplished during the period of three days. The best calcination conditions for removal of the organic template (P123) were optimized by thermal analysis (TG/DTG) and through analyses of Xray diffraction (XRD), infrared spectroscopy (FT-IR), nitrogen adsorption and scanning electron microscopy (SEM) was verified that as much the hydrothermal synthesis method as the calcination by TG were promising for the production of mesoporous materials with high degree of hexagonal ordination. The general analysis of the method of Analog Scan was performed at 10oC/min to 500 oC to avoid deterioration of capillary with very high temperatures. Thus, with the results, we observed signs mass/charge more evident and, using the MID method, was obtained curve of evolution of these signals. The addition of catalysis produced a decrease in temperature of polymer degradation proportional to the acidity of the catalyst. The results showed that the mesoporous materials contributed to the formation of compounds of lower molecular weight and higher value in the process of catalytic degradation of LDPE, representing an alternative to chemical recycling of solid waste
Resumo:
Clustering data is a very important task in data mining, image processing and pattern recognition problems. One of the most popular clustering algorithms is the Fuzzy C-Means (FCM). This thesis proposes to implement a new way of calculating the cluster centers in the procedure of FCM algorithm which are called ckMeans, and in some variants of FCM, in particular, here we apply it for those variants that use other distances. The goal of this change is to reduce the number of iterations and processing time of these algorithms without affecting the quality of the partition, or even to improve the number of correct classifications in some cases. Also, we developed an algorithm based on ckMeans to manipulate interval data considering interval membership degrees. This algorithm allows the representation of data without converting interval data into punctual ones, as it happens to other extensions of FCM that deal with interval data. In order to validate the proposed methodologies it was made a comparison between a clustering for ckMeans, K-Means and FCM algorithms (since the algorithm proposed in this paper to calculate the centers is similar to the K-Means) considering three different distances. We used several known databases. In this case, the results of Interval ckMeans were compared with the results of other clustering algorithms when applied to an interval database with minimum and maximum temperature of the month for a given year, referring to 37 cities distributed across continents
Resumo:
Na computação científica é necessário que os dados sejam o mais precisos e exatos possível, porém a imprecisão dos dados de entrada desse tipo de computação pode estar associada às medidas obtidas por equipamentos que fornecem dados truncados ou arredondados, fazendo com que os cálculos com esses dados produzam resultados imprecisos. Os erros mais comuns durante a computação científica são: erros de truncamentos, que surgem em dados infinitos e que muitas vezes são truncados", ou interrompidos; erros de arredondamento que são responsáveis pela imprecisão de cálculos em seqüências finitas de operações aritméticas. Diante desse tipo de problema Moore, na década de 60, introduziu a matemática intervalar, onde foi definido um tipo de dado que permitiu trabalhar dados contínuos,possibilitando, inclusive prever o tamanho máximo do erro. A matemática intervalar é uma saída para essa questão, já que permite um controle e análise de erros de maneira automática. Porém, as propriedades algébricas dos intervalos não são as mesmas dos números reais, apesar dos números reais serem vistos como intervalos degenerados, e as propriedades algébricas dos intervalos degenerados serem exatamente as dos números reais. Partindo disso, e pensando nas técnicas de especificação algébrica, precisa-se de uma linguagem capaz de implementar uma noção auxiliar de equivalência introduzida por Santiago [6] que ``simule" as propriedades algébricas dos números reais nos intervalos. A linguagem de especificação CASL, Common Algebraic Specification Language, [1] é uma linguagem de especificação algébrica para a descrição de requisitos funcionais e projetos modulares de software, que vem sendo desenvolvida pelo CoFI, The Common Framework Initiative [2] a partir do ano de 1996. O desenvolvimento de CASL se encontra em andamento e representa um esforço conjunto de grandes expoentes da área de especificações algébricas no sentido de criar um padrão para a área. A dissertação proposta apresenta uma especificação em CASL do tipo intervalo, munido da aritmética de Moore, afim de que ele venha a estender os sistemas que manipulem dados contínuos, sendo possível não só o controle e a análise dos erros de aproximação, como também a verificação algébrica de propriedades do tipo de sistema aqui mencionado. A especificação de intervalos apresentada aqui foi feita apartir das especificações dos números racionais proposta por Mossakowaski em 2001 [3] e introduz a noção de igualdade local proposta por Santiago [6, 5, 4]
Resumo:
The interval datatype applications in several areas is important to construct a interval type reusable, i.e., a interval constructor can be applied to any datatype and get intervals this datatype. Since the interval is, of certain form, a set of elements limited for two bounds, left and right, with a order notions, then it s reasonable that interval constructor enclose datatypes with partial order. On the order hand, what we want is work with interval of any datatype like this we work with this datatype then. it s important to guarantee the properties of the datatype when maps to interval of this datatype. Thus, the interval constructor get a theory to parametrized interval type, i.e., a interval with generics parameters (for example rational, real, complex). Sometimes, the interval application in some algebras doesn t guarantee the mainutenance of their properties, for example, when we use interval of real, that satisfies the field properties, it doesn t guarantee the distributivity propertie. A form to surpass this problem Santiago introduced the local equality theory that weakened the notion of strong equality, and thus, allowing some properties are local keeped, what can be discard before. The interval arithmetic generalization aim to apply the interval constructor on ordered algebras weakened for local equality with the purpose of the keep their properties. How the intervals are important in applications with continuous data, it s interesting specify that theory using a specification language that supply a system development using intervals of form disciplined, trustworth and safe. Currently, the algebraic specification language, based in math models, have been use to that intention often. We choose CASL (Common Algebraic Specification Language) among others languages because CASL has several characteristics excellent to parametrized interval type, such as, provide parcialiy and parametrization
Resumo:
Symbolic Data Analysis (SDA) main aims to provide tools for reducing large databases to extract knowledge and provide techniques to describe the unit of such data in complex units, as such, interval or histogram. The objective of this work is to extend classical clustering methods for symbolic interval data based on interval-based distance. The main advantage of using an interval-based distance for interval-based data lies on the fact that it preserves the underlying imprecision on intervals which is usually lost when real-valued distances are applied. This work includes an approach allow existing indices to be adapted to interval context. The proposed methods with interval-based distances are compared with distances punctual existing literature through experiments with simulated data and real data interval
Resumo:
The activation of hepatic stellate cells (HSC) is considered the most important event in hepatic fibrogenesis. The precise mechanism of this process is unknown in autoimmune hepatitis (AIH), and more evidence is needed on the evolution of fibrosis. The aim of this study was to assess these aspects in children with type 1 AIH. We analyzed 16 liver biopsy samples from eight patients, paired before treatment and after clinical remission, performed an immunohistochemical study with anti-actin smooth muscle antibody and graded fibrosisand inflammation on a scale of 0:4 (Batts and Ludwig scoring system). We observedthere was no significant reduction in fibrosis scores after 24± 18 months (2.5 ± 0.93 vs. 2.0± 0.53, P = 0.2012). There was an important decrease in inflammation: portal (2.6 ±0.74 vs. 1.3± 0.89, P = 0.0277), periportal/periseptal (3.0 ±0.76 vs. 1.4 ± 1.06, P = 0.0277), and lobular (2.8 ± 1.04 vs. 0.9± 0.99, P =0.0179). Anti-actin smooth muscle antibodies were expressed in the HSC of the initial biopsies (3491.93 ±2051.48 lm2), showing a significant reduction after remission (377.91 ±439.47 lm2) (P = 0.0117). HSC activation was demonstrated in the AIH of children. The reduction of this activation after clinical remission, which may precede a decrease in fibrosis, opens important perspectives in the follow-up of AIH.
Resumo:
In this work we studied the consistency for a class of kernel estimates of f f (.) in the Markov chains with general state space E C Rd case. This study is divided into two parts: In the first one f (.) is a stationary density of the chain, and in the second one f (x) v (dx) is the limit distribution of a geometrically ergodic chain
Resumo:
In this work, we studied the strong consistency for a class of estimates for a transition density of a Markov chain with general state space E ⊂ Rd. The strong ergodicity of the estimates for the density transition is obtained from the strong consistency of the kernel estimates for both the marginal density p(:) of the chain and the joint density q(., .). In this work the Markov chain is supposed to be homogeneous, uniformly ergodic and possessing a stationary density p(.,.)