68 resultados para Filtração
Resumo:
The advance of drilling in deeper wells has required more thermostable materials. The use of synthetic fluids, which usually have a good chemical stability, faces the environmental constraints, besides it usually generate more discharge and require a costly disposal treatment of drilled cuttings, which are often not efficient and require mechanical components that hinder the operation. The adoption of aqueous fluids generally involves the use of chrome lignosulfonate, used as dispersant, which provides stability on rheological properties and fluid loss under high temperatures and pressures (HTHP). However, due to the environmental impact associated with the use of chrome compounds, the drilling industry needs alternatives that maintain the integrity of the property and ensure success of the operation in view of the strong influence of temperature on the viscosity of aqueous fluids and polymers used in these type fluids, often polysaccharides, passives of hydrolysis and biological degradation. Therefore, vinyl polymers were selected for this study because they have predominantly carbon chain and, in particular, polyvinylpyrrolidone (PVP) for resisting higher temperatures and partially hydrolyzed polyacrylamide (PHPA) and clay by increasing the system's viscosity. Moreover, the absence of acetal bonds reduces the sensitivity to attacks by bacteria. In order to develop an aqueous drilling fluid system for HTHP applications using PVP, HPAM and clay, as main constituents, fluid formulations were prepared and determined its rheological properties using rotary viscometer of the Fann, and volume filtrate obtained by filtration HTHP following the standard API 13B-2. The new fluid system using polyvinylpyrrolidone (PVP) with high molar weight had higher viscosities, gels and yield strength, due to the effect of flocculating clay. On the other hand, the low molecular weight PVP contributed to the formation of disperse systems with lower values in the rheological properties and fluid loss. Both systems are characterized by thermal stability gain up to around 120 ° C, keeping stable rheological parameters. The results were further corroborated through linear clay swelling tests.
Resumo:
The advance of drilling in deeper wells has required more thermostable materials. The use of synthetic fluids, which usually have a good chemical stability, faces the environmental constraints, besides it usually generate more discharge and require a costly disposal treatment of drilled cuttings, which are often not efficient and require mechanical components that hinder the operation. The adoption of aqueous fluids generally involves the use of chrome lignosulfonate, used as dispersant, which provides stability on rheological properties and fluid loss under high temperatures and pressures (HTHP). However, due to the environmental impact associated with the use of chrome compounds, the drilling industry needs alternatives that maintain the integrity of the property and ensure success of the operation in view of the strong influence of temperature on the viscosity of aqueous fluids and polymers used in these type fluids, often polysaccharides, passives of hydrolysis and biological degradation. Therefore, vinyl polymers were selected for this study because they have predominantly carbon chain and, in particular, polyvinylpyrrolidone (PVP) for resisting higher temperatures and partially hydrolyzed polyacrylamide (PHPA) and clay by increasing the system's viscosity. Moreover, the absence of acetal bonds reduces the sensitivity to attacks by bacteria. In order to develop an aqueous drilling fluid system for HTHP applications using PVP, HPAM and clay, as main constituents, fluid formulations were prepared and determined its rheological properties using rotary viscometer of the Fann, and volume filtrate obtained by filtration HTHP following the standard API 13B-2. The new fluid system using polyvinylpyrrolidone (PVP) with high molar weight had higher viscosities, gels and yield strength, due to the effect of flocculating clay. On the other hand, the low molecular weight PVP contributed to the formation of disperse systems with lower values in the rheological properties and fluid loss. Both systems are characterized by thermal stability gain up to around 120 ° C, keeping stable rheological parameters. The results were further corroborated through linear clay swelling tests.
Resumo:
In this work a chitosan (CS) ionically crosslinked were manufactured by treatment with sulfuric acid solution for application in the treatment of wastewater from oil industry. Two crosslinking process were developed: homogeneous and heterogeneous. In the homogeneous process the ratio molar of SO42-/ NH3+ (1:6 and 1:4) were the variable analyzed, denominated CS16 and CS14 respectively. In the heterogeneous process the soaking time of the membranes in sulfuric acid solution were the variable studied, being used times of 5 (CS5) and 30 (CS30) minutes. FTIR-ATR results indicated no changes in the characteristics of chitosan after homogeneous crosslinking process, while heterogeneous crosslinking showed formation of ionic bonds between protonated groups from chitosan and the crosslinking agent sulfate ions. TG/DTG and XRD analysis confirmed the formation of these interactions, as also shown the new structure on the surface region of CS5 and CS30 membranes compared to CS, CS16 e CS14. Swelling test in aqueous medium have shown that crosslinking process reduced the membrane sorption capacity. Swelling test in acid medium demonstrated that CS16 and CS14 membranes increasing the adsorption capacity up to a maximum percentage of 140% approximately, whereas the CS5 e CS30 reached a maximum of 60%. The mechanical properties indicated the stiff and ductile behavior of crosslinked membrane. Adsorption experiments of CuCl2 results that CS16 membranes reached the efficiency maximum with 73% of copper removal at pH 5.0 and 87% at pH 4.0. The experiments with CuSO4 also obtained efficiency maximum to the CS16 membrane and 80% to the removal of Cu2+ ions. Also was verified that the increase of concentration and temperature cause a decrease in the adsorption capacity for all membranes. Kinetics study indicated that pseudo-second-order obtained characterized better the membranes. Equilibrium studies demonstrated that the CS, CS16 and CS14 follow the Langmuir model, whereas CS5 and CS30 follows Freundlich model. Filtration experiments results with rejection maximum to the CS16 and CS5 membranes, reaching 92 and 98% respectively.
Resumo:
In this work a chitosan (CS) ionically crosslinked were manufactured by treatment with sulfuric acid solution for application in the treatment of wastewater from oil industry. Two crosslinking process were developed: homogeneous and heterogeneous. In the homogeneous process the ratio molar of SO42-/ NH3+ (1:6 and 1:4) were the variable analyzed, denominated CS16 and CS14 respectively. In the heterogeneous process the soaking time of the membranes in sulfuric acid solution were the variable studied, being used times of 5 (CS5) and 30 (CS30) minutes. FTIR-ATR results indicated no changes in the characteristics of chitosan after homogeneous crosslinking process, while heterogeneous crosslinking showed formation of ionic bonds between protonated groups from chitosan and the crosslinking agent sulfate ions. TG/DTG and XRD analysis confirmed the formation of these interactions, as also shown the new structure on the surface region of CS5 and CS30 membranes compared to CS, CS16 e CS14. Swelling test in aqueous medium have shown that crosslinking process reduced the membrane sorption capacity. Swelling test in acid medium demonstrated that CS16 and CS14 membranes increasing the adsorption capacity up to a maximum percentage of 140% approximately, whereas the CS5 e CS30 reached a maximum of 60%. The mechanical properties indicated the stiff and ductile behavior of crosslinked membrane. Adsorption experiments of CuCl2 results that CS16 membranes reached the efficiency maximum with 73% of copper removal at pH 5.0 and 87% at pH 4.0. The experiments with CuSO4 also obtained efficiency maximum to the CS16 membrane and 80% to the removal of Cu2+ ions. Also was verified that the increase of concentration and temperature cause a decrease in the adsorption capacity for all membranes. Kinetics study indicated that pseudo-second-order obtained characterized better the membranes. Equilibrium studies demonstrated that the CS, CS16 and CS14 follow the Langmuir model, whereas CS5 and CS30 follows Freundlich model. Filtration experiments results with rejection maximum to the CS16 and CS5 membranes, reaching 92 and 98% respectively.
Resumo:
-D-glucosidase (EC 3.2.1.21) is one of the most interesting glycosidases, especially for hydrolysis cellobiose releasing glucose, is last step degradation of cellulose. This function makes the -D-glucosidase is of great interest as a versatile industrial biocatalyst, being critical to various bio-treatment / biorefinery processes, such as bioethanol production. Hen in the report, a -D-glucosidase was extracts from protein extracted of the invertebrate marine Artemia franciscana was purified and characterized with a combination of precipitation with ammonium sulfate (0 - 30%, 30 to 50%, 50 to 80%), the fraction saturated in the range of 30 to 50% (called F-II) was applied in a molecular exclusion chromatography, in Sephacryl S-200, the fractions corresponding to the first peak of activity of -D-glucosidase were gathered and applied in a chromatography of ion exchange in Mono Q; the third peak this protein obtained chromatography, which coincides with the peak of activity of -D-glucosidase was held and applied in a gel filtration chromatography Superose 12 where the first peak protein, which has activity of -D-glucosidase was rechromatography on Superose 12. This enzyme is probably multimerica, consisting of three subunit molecular mass of 52.7 kDa (determined by SDS-PAGE) with native molecular mass of 157 kDa (determined by gel filtration chromatography on Superose 12 under the system FPLC). The enzyme was purified 44.09 times with a recovery of 1.01%. Using up p-nitrophenyl-β-D-glucopiranoside as substrate obtained a Km apparent of 0.229 mM and a Vmax of 1.109 mM.60min-1.mL-1mM. The optimum pH and optimum temperature of catalysis of the synthetic substrate were 5.0 and 45 °C, respectively. The activity of the -D-glucosidase was strongly, inhibited by silver nitrate and N- etylmaleimide, this inhibition indicates the involvement of radical sulfidrila the hydrolysis of synthetic substrate. The -D-glucosidase of Artemia franciscana presented degradativa action on celobiose, lactose and on the synthetic substrate -nitrophenyl-β-D-glucopiranoside indicating potential use of this enzyme in the industry mainly for the production of bioethanol (production of alcohol from the participating cellulose), and production hydrolysate milk (devoid of milk lactose)
Resumo:
Four different sponge species were screened using Ouchterlony agarose gel and immunodiffusion tests to identify cross-reactivity with the polyclonal antibody IgG anti-deglicosilated CvL, a lectin from Cliona varians. Crude extract from the sponge Cinachyrella apion showed cross-reactivity and also a strong haemmaglutinating activity towards human erythrocytes of all ABO groups. Thus, it was submitted to acetone fractionation, IgG anti-deglicosilated CvL Sepharose affinity chromatography, and Fast Protein Liquid Chromatography (FPLC-AKTA) gel filtration on a Superose 6 10 300 column to purify a novel lectin. C. apion lectin (CaL) agglutinated all types of human erythrocytes with preference for papainized type A and O erythrocytes. The haemagglutinating activity is independent of Ca2+, Mg2+ and Mn2+ ions, and it was strongly inhibited by the disaccharide D-lactose, up to a minimum concentration of 6.25 mM. CaL molecular mass determined by FPLC-AKTA gel filtration on a Superose 12 10 300 column and SDS gel electrophoresis was approximately 124 kDa, consisting of eight subunits of 15.5 kDa, assembled by hydrophobic interactions. The lectin was relatively heat- and pH-stable. Leishmania chagasi romastigotes were agglutinated by CaL, indicating that lactose receptors could be presented in this parasite stage. These findings are indicative of the physiological defense roles of CaL and its possible use in the antibiosis of pathogenic protozoa
Resumo:
This work studies the involved enzymatic way in the metabolism of glycosaminoglycans sulfateds in the mollusc Pomacea sp. Had been identified endoglycosidases and exoglycosidases in the enzymatic extract of the mollusc Pomacea sp by means of hydrolysis activity in condroitim sulphate of whale cartilage and of the p-Nitrofenil-β-glucuronide, respectively. The enzymatic extracts qere obtained of Pomacea sp. being used of 0.1 sodium acetate buffer, pH 5.0 and later centrifugated the 8,000 x g and the presents proteins in the sobrenadante were submitted to the fractionament with two crescents ammonium sulphate concentrations, the visualized activity biggest in the F2 fraction (50-80%). The β-glucuronidase (F3) was isolated in gel chromatography filtration Biogel 1.5m, the purification degree was ratified in Chromatography Liquid of high efficiency (HPLC). The enzyme was purificated 6.362,5 times with 35,6% yield. The β -glucuronidase isolated in this work showed a molecular mass of 100 kDa, determined for eletroforese in poliacrilamida gel . The determination of the ideal kinetic parameters for the catalysis of the p-nitrofenil- β -glucuronide for β-glucuronidase, showed excellent activity in pH 5,0 and temperature 65ºC for 6 hours and apparent Km of 72 x 10-2 mM. It is necessary for the total degradation of 3mM of p-N-β-glucoronide, the amount of 1,2μg of ss-glucuronidase. The BaCl2 increased the activity of ss-glucuronidase, and the activity was inhibited completely by the composites SDS and NaH2PO4
Resumo:
The fruit fly Ceratitis capitata is considered the most destructive pest of the world fruitculture. Many pest management practices, mainly based on agrochemicals, have been developed to allow the world-wide commerce of fruit. Solutions to decrease the use of synthetic insecticides in agriculture are based on the development of new target-specific compounds which cause less damage to the environment, especially vegetal proteins with insecticidal effects. The aim of this work was to evaluate the deleterious effect of a purified vicilin of E. velutina (EvV) seeds to C. capitata larvae and adult insects and to investigate the mechanisms involved in these effects. EvV was purified, characterized and its deleterious effect was tested in bioassay systems. EvV mechanism of action was determined by immunodetection techniques and fluorescence localization in chitin structures that are present in C. capitata digestory system. EvV is a glycoprotein with affinity to chitin. Its molecular weight, of 216,57 kDa, was determined by gel filtration chromatography in FPLC system. Using SDS-PAGE, it was possible to observe EvV dissociation in two main subunits of 54,8 and 50,8 kDa. When it was submitted to eletrophoresis in native conditions, EvV presented only one band of acid characteristic. The WD50 and LD50 values found in the bioassays were 0,13% and 0,14% (w/w), respectively for the larvae. EvV deleterious effects were related to the binding to chitin structures presented in peritrophic membrane and gut epithelial cells, associated with its low digestibility in C. capitata digestive tract. The results described herein are the first demonstration of the larvicidal effects of plant protein on C. capitata larvae. EvV may be part of the pest management programs, in the toxic bait composition, or an alternative in plant improvement program
Resumo:
A β-D-N-acetilglucosaminidase extracted and partially isolated from crustacean Artemia franciscana by ammonium sulfate precipitation and filtration gel chromatography Bio Gel A 1.5m. the enzyme was immobilized on ferromagnetic Dacron yielding a insoluble active derivative with 5.0 units/mg protein and 10.35% of the soluble enzyme activity. β-D-N-acetilglucosaminidase-ferromagnetic Dacron was easily removed from the reaction mixture by a magnetic field, it was reused for ten times without loss in its activity. The ferromagnetic Dacron was better activated at pH 5.0. The particles visualized at scanning electron microscope (SEM) had presented different sizes, varying between 721nm and 100µm. Infra red confirmed immobilization on support, as showed by primary amino peaks at 1640 and 1560 cm-1 . The immobilize enzyme presented Km of 2.32 ± 0.48 mM and optimum temperature of 50°C. Bought presented the same thermal stable of the soluble enzyme and larger enzymatic activity at pH 5.5. β-D-N-acetilglucosaminidase-Dacron ferromagnético showed sensible for some íons as the silver (AgNO3), with loss of activity. The β-D-N acetilglucosaminidase activity for mercury chloride (HgCl2), whom is one of the most toxic substance joined in nature, it was presented activity already diminished at 0,01mM and lost total activity at 4mM, indicating sensitivity for this type of metal. β-D-N-acetilglucosaminidase-ferromagnetic Dacron showed degradative capacity on heparan sulfate, the enzyme still demonstrated degradative capacity on heparan sulphate, suggesting a possible application to produce fractions of this glycosaminoglycan
Resumo:
A 140,0 kDa lectin was purified and characterized from the mushroom Clavaria cristata. The purification procedures from the crude extract of the mushroom comprised gel filtration chromatography on Sephacryl s200 and ion exchange on Resource Q column. The purified lectin agglutinated all types of human erythrocytes with preference for trypsinized type O erythrocytes. The haemagglutinating activity is dependent of Ca 2+ ions and was strongly inhibited by the glycoprotein bovine submaxillary mucin (BSM) up to the concentration of 0, 125 mg/mL. The C. cristata lectin (CcL) was stable in the pH range of 2,5-11,5 and termostable up to 80 °C. CcL molecular mass determined by gel filtration on a Superose 6 10 300 column was approximately 140,3 kDa. SDS polyacrilamide gel electrophoresis revealed a single band with a molecular mass of approximately 14,5 kDa, when the lectin was heated at 100 ⁰C in the presence or absence of β-mercaptoethanol. CcL induced activation of murine peritoneal macrophages in vitro resulting in the release of nitric oxide (NO), reaching the maximum production at 24 h. In experimental paw oedema model in mice, CcL showed proinflammatory activity being able to induce oedema formation. Cell viability of HepG2, MDA 435 e 3T3 cell lines was examined after 72 h of incubation with CcL in different concentrations (0,5-50 μg/mL). CcL inhibited HepG2 cells growth with an IC50 value of 50 μg/mL. In the present work, the observed immunomodulatory and antiproliferative effects indicate CcL as a possible immunomodulator compound, interfering in the macrophages immune response, taking possible anti-parasitic, anti-tumoral effects or diagnostic and/or therapeutic
Resumo:
Globulins fractions of legume seeds of Crotalaria pallida, Erytrina veluntina and Enterolobium contortisiliquum were isolated and submitted to assays against serine, cysteine and aspartic proteinases, as also amylase present in midgut of C. maculatus and Z. subfasciatus. Hemagglutination assays indicated presence of a lectin in E. veluntina globulin fractions. This lectin had affinity to human erythrocytes type A, B and O. Vicilins were purified by chromatography on Sephacryl S-300 followed of a chromatography on Sephacryl S-200, which was calibrated using protein markers. Vicilins from C. pallida (CpV) and E. veluntina (EvV) seeds had a molecular mass of 124.6 kDa and E. contortisiliquum a molecular mass of 151kDa. Eletrophoresis in presence of SDS showed that CpV was constituted by four subunities with apparent molecular mass of 66, 63, 57 and 45 kDa, EvV with three subunities with apparent molecular mass of 45kDa and EcV four subunities, two with 37.1 kDa and two with 25.8 kDa. Non denaturantig eletrophoresis displayed single bands with high homogeneity, where CpV had lower acidic behavior. All vicilins are glycoproteins with carbohydrate contents at 1 to1.5%. Bioassays were done to detect deleterious effects of vicilins against C. maculatus and Z. subfasciatus larvae. CpV, EvV and EcV exhibited a WD50 of 0.28, 0.19 and 1.03%; LD50 0.2, 0.26, and 1.11% respectively to C. maculatus. The dose responses of CpV, EvV and EcV to Z. subfasciatus were: WD50 of 0.12, 0.14, 0.65% and LD50 of 0.09, 0.1, and 0.43% respectively. The mechanism of action of these proteins to bruchids should be based on their properties of bind to chitin present in mid gut of larvae associated with the low digestibility of vicilin. In assays against phytopatogenous fungus, only EcV was capable of inhibit F. solani growth at concentrations of 10 and 20 µg and its action mechanism should be also based in the affinity of EcV to chitin present in the fungi wall
Resumo:
Grains and legume seeds are foods that form the basis of the diets of many cultures around the world, winch contritbute to the daily nutrient requirements of humans. Vicilins (7S globulin) are storage proteins found in legume seeds, and may have an additional function constitutive defense of the embryo against pests and pathogens. In this work the vicilin from Anadenanthera macrocarpa - AmV (red-angico), was purified and partially characterized, its effect on development and larval survival and adult emergence of Callosobruchus maculatus was evaluated by determination of LD50, WD50 and ED50 in system bioassay. Purification of vicilin was initiated by the chitin affinity chromatography and then gel filtration (Superdex 75 Tricorn 10x300 mm) FPLC system followed by reverse phase chromatography (C8 phenomenex) on HPLC system. Bioassays WD50 and LD50 for larvae were 0.32% and 0.33% (w:w) respectively, since the ED50 for adults was 0.096%. The probable mechanism of action was evaluated by testing digestibility of AmV in vitro, and observed for the involvement of two fragments vicilins immunoreactive against polyclonal Anti-vicilin from Erythrina velutina (Anti-EvV) about of 22 and 13 kDa chitin binding. The AmV in its native form has been recognized by the anti-EvV, indicating that there is a conserved region in the vicilin and is probably corresponding to the chitin binding domains. These results point to a new vicilin chitin binding that can subsequently be used as a possible biopesticide protein source, in order to control insect pest C. maculatus and confirm literature findings that demonstrate vicilin in the presence of different kinds of ligands to conserved regions chitin not yet characterized
Resumo:
Oil well cementing materials consist of slurries of Special class Portland cement dispersed in water. Admixtures can be used to provide the necessary fluidity, so the material can be efficiently pumped down as well as penetrate porous rocks with controlled filter loss. Construction admixtures can be used to modify the properties of oil well cements provided they can withstand and hold their properties at the higher than ambient temperatures usually encountered in oil fields. In civil construction, superplasticizer play the role of dispersants that reduce the facto r of water cement improve mechanical properties and fluidity of the cement, whereas anti-segregation agents improve the workability of the slurry. In the present study, oil well cement slurries were produced adding both a dispersant and an anti-segregation agent conventionally used in Portland CPII-Z-32 RS cement aiming at materials for primary cementing and squeeze operations. Three basic aspects were evaluated: fluidity, filter loss and the synergetic effect of the admixtures at two temperatures, i.e., 27°C and 56°C, following API RP 10B practical recommendations. The slurries were prepared using admixture concentrations varying from 2.60 Kgf/m3 (0.02 gallft3) to 5.82 Kgf/m3 (0.045 galJft3) BWOC. The density of the slurries was set to 1.89 g/cm3 (15.8 Ib/gal). 0.30 to 0.60% BWOC of a CMC-based anti-segregation agent was added to the cement to control the filter loss. The results showed that the addition of anti-segregation at concentrations above 0.55% by weight of cement resulted in the increased viscosity of the folders in temperatures evaluated. The increasing the temperature of the tests led to a reduction in the performance of anti-segregation. At concentrations of 5.20 kgf/m3 (0,040 gallft3) and 5.82 Kgf/m3 (0,045 gal/ft 3) observed a better performance of the properties evaluated in the proposed system. At low temperature was observed instability in the readings of rheology for all concentrations of anti-segregation. Contents that increasing the concentration of anti¬-segregation is limited concentrations greater than 0.55 % BWOC of the CMC in temperature analyzed. The use of the system with CMC promoted a good performance against the properties evaluated. The principal function of anti¬-segregation was optimized with increasing concentration of superplasticizer, at temperatures above the 2rC. The study of the behaviour of systemic additives, resulting in slurries of cement, which can be optimized face studies of other intrinsic properties in oil fields
Resumo:
The effluents released by the textile industry have high concentrations of alkali, carbohydrates, proteins, in addition to colors containing heavy metals. Therefore, a filter was prepared aiming primarily to the removal of color. In order to prepare this filter, rice hulls and diatomite were used, which have in their structure, basically amorphous hydrated silica. The silica exists in three crystalline forms: quartz, tridymite and cristobalite. In accordance with the above considerations, this study was divided into two stages; the first corresponds to the preparation of the filter and the second to carry out the tests in the effluent/filter in order to verify the efficiency of the color removal. First, the raw material was subjected to a chemical analysis and XRD, and then the diatomite was mixed, via humid, with a planetarium windmill with 20 %, 40 %, 60 % and 80 % of rice husk ash. To the mixture, 5 % carboxymethylcellulose (CMC) was added as a binder at room temperature. The samples were uniaxially compacted into metallic matrix of 0.3 x 0.1 cm² of area at a pressure of 167 MPa by means of hydraulic press and then sintered at temperatures of 1,000 °C, 1,200 °C and 1,400 °C for 1 h and submitted to granulometry test using laser, linear retraction, water absorption, apparent porosity and resistance to bending, DTA, TMA and XRD. To examine the pore structure of the samples scanning electron microscope (SEM) was used. Also tests were carried out in a mercury porosimeter to verify the average size of the pores and real density of the samples. In the second stage, samples of the effluent were collected from a local industry, whose name will be preserved, located in Igapó, in the State of Rio Grande do Norte - RN. The effluent was first pretreated before filtration and then subjected to a treatment of flotation. The effluent was then characterized before and after filtration, with parameters of color, turbidity, suspended solids, pH, chemical and biochemical oxygen demand (COD and BOD). Thus, through the XRD analysis the formation of cristobalite α in all samples was observed. The best average size of pore was found to be 1.75 μm with 61.04 % apparent porosity, thus obtaining an average 97.9 % color removal and 99.8 % removal of suspended solid
Resumo:
Thin commercial aluminum electrolytic and passed through reactions was obtained with anodic alumina membranes nanopores. These materials have applications in areas recognized electronic, biomedical, chemical and biological weapons, especially in obtaining nanostructures using these membranes as a substrate or template for processing nanowires, nanodots and nanofibers for applications noble. Previous studies showed that the membranes that have undergone heat treatment temperature to 1300° C underwent changes in morphology, crystal structure and optical properties. This aim, this thesis, a study of the heat treatment of porous anodic alumina membranes, in order to obtain and to characterize the behavior changes structures during the crystallization process of the membranes, at temperatures ranging between 300 and 1700° C. It was therefore necessary to mount a system formed by a tubular furnace resistive alumina tube and controlled environment, applying flux with special blend of Ag-87% and 13% N2, in which argon had the role of carrying out the oxygen nitrogen system and induce the closing of the pores during the densification of the membrane. The duration of heat treatment ranged from 60 to 15 minutes, at temperatures from 300 to 1700° C respectively. With the heat treatment occurred: a drastic reduction of porosity, grain growth and increased translucency of the membrane. For the characterization of the membranes were analyzed properties: Physical - thermogravimetric, X-ray diffraction, BET surface area; morphological - SEM, EDS through compositional and, optical absorbance, and transmittance in the UV-VIS, and FTIR. The results using the SEM showed that crystallization has occurred, densification and significant changes in membrane structure, as well as obtaining microtube, the BET analysis showed a decrease in specific surface area of the membranes has to 44.381 m2.g-1 to less than 1.8 m2.g-1 and in the analysis of transmittance and absorbance was found a value of 16.5% in the range of 800 nm, characteristic of the near infrared and FTIR have confirmed the molecular groups of the material. Thus, one can say that the membranes were mixed characteristics and properties which qualify for use in gas filtration system, as well as applications in the range of optical wavelength of the infra-red, and as a substrate of nanomaterials. This requires the continuation and deepening of additional study