162 resultados para Resíduo de gesso
Resumo:
Petroleum evaluation is analyze it using different methodologies, following international standards to know their chemical and physicochemical properties, contaminant levels, composition and especially their ability to generate derivatives. Many of these analyzes consuming a lot of time, large amount of samples , supplies and need an organized transportation logistics, schedule and professionals involved. Looking for alternatives that optimize the evaluation and enable the use of new technologies, seven samples of different centrifuged Brazilian oils previously characterized by Petrobras were analyzed by thermogravimetry in 25-900° C range using heating rates of 05, 10 and 20ºC per minute. With experimental data obtained, characterizations correlations were performed and provided: generation of true boiling point curves (TBP) simulated; comparing fractions generated with appropriate cut standard in temperature ranges; an approach to obtain Watson characterization factor; and compare micro carbon residue formed. The results showed a good chance of reproducing simulated TBP curve from thermogravimetry taking into account the composition, density and other oil properties. Proposed correlations for experimental characterization factor and carbon residue followed Petrobras characterizations, showing that thermogravimetry can be used as a tool on oil evaluation, because your quick analysis, accuracy, and requires a minimum number of samples and consumables
Resumo:
This works aims at investigating the effects of adding waste from RCBP-polyester button manufacturing to Portland cement concrete, particularly regarding its consistency and mechanic strength. The RCBP used came from a button factory located in Parnamirim, RN, Brazil. The waste was added to the concrete on different ratios: 5 %, 10 %, 15 % and 20 % of the total cement mass. A sample of concrete without the RCBP was used as reference, 1:1,33:2,45:0,50. For the mechanic strength test four samples were tested with different ages (3, 7 and 28 days old) and mixtures. Furthermore, a Slump Test was also conducted in order to verify the concrete s consistency. A tendency to a reduction in the compression resistance was noticed for all samples. For the samples with 5 % and 10 %, there was also an increase in the traction resistance during inflexion, regarding the reference concrete. In the microstructural analysis, the RBCP was observed to show an irregular and porous surface, thus explaining the consistency decrease
Resumo:
From the 70`s, with the publication of the Manifesto for Environment UN Conference, held in Stockholm, in Sweden (1972), defend and improve the environment became part of our daily lives. Thus, several studies have emerged in several segments in order to reuse the waste. Some examples of waste incorporated in portland cement concrete are: rice husk ash, bagasse ash of cane sugar, powder-stone, microsilica, tire rubber, among others. This research used the residue of the mining industry Scheelite, to evaluate the incorporation of the residue composition of Portland cement concrete, replacing the natural sand. The percentage of residue were incorporated from 0% to 100%, with a variation of 10%, 11 being produced concrete mix in the ratio 1:2:3:0.60, by mass. We evaluated the following characteristics of concrete: slump test, compressive strength, tensile strength by diametral compression, water absorption, porosity and density, based on the ABNT, through tests performed in the Laboratory of Civil Construction, UFRN. The trace with the addition of 60% scheelite residue was obtained which better performance. Therefore, the use of the waste from the production of Scheelite is feasible due to the durability parameters (water absorption and porosity), sustainability, and the good results of the resistance of the concrete
Resumo:
The construction industry is responsible for generating a lot of waste because of their activities. Consequently, it is noticeable the occurrence of environmental problems in terms of its disposal in inappropriate places. Faced with this problem, some studies have been conducted with the aim of developing technologies and alternatives for recycling construction and demolition waste (CDW), motivated by the scarcity of natural resources and reduction of environmental problems generated. The research aims to characterize the recycled aggregates derived from construction and demolition waste (CDW) produced in the Greater Natal-RN and analyze the performance of mortar coating produced with recycled aggregates. The study includes the chemical , physical and microstructural characterization of recycled aggregates , as well as conducting microscopic analysis and laboratory tests in the fresh state (consistency index , water retention , bulk density and content of entrained air ) and in the hardened state ( compressive strength , tensile strength in bending , water absorption by immersion and capillary , mass density and void ratio ) for mortars produced from different levels of substitution of aggregates ( 0, 20 %, 40 %, 60 %, 80 % and 100 %). The results were satisfactory, providing mortars produced with recycled aggregates, smaller mass density and dynamic modulus values as well as an increase in the rates of absorption and porosity. The tensile strength in bending and compression for TP1 (1:2:8) trait were lower for mortars produced with recycled aggregates and the best result was 20% for replacement. For the TP2 (1:8) mapping, there was an increase in resistance to traction and compression and the best result was for 100% replacement of natural aggregates by recycled. The experiments led to the conclusion that the technical and economic point of view that the mortars produced with recycled aggregates can be used in construction, only if there is an effective control in production processes of recycled aggregate and at the dosage of mortars
Resumo:
The world market of Kaolin has been growing as new investments for better quality of materials have been applied. This market produces amounts of dross that are put in the environment in a wrong way, causing damages to it. Trying to reduce these damages, researches have been done in an attempt to use kaolin dross in ceramic. The disposal of kaolin dross in the environment by the industries of the states of Rio Grande do Norte and Paraiba have great impact in society. Usually this dross is disposed clandestinely in places like roads, river banks and lands of small cities. The present work shows the characteristics of the kaolin produced by the mining company in Junco do Seridó, Paraiba state, western Seridó, 300 km from Natal, in the border of both states. After that, researches were done to study its physical and the chemistry characteristics, trying to see if it can be used in white ceramic. The samples got were bolted in fabric of 325# . The technological characteristics tried to use it as a product in white ceramic. For that, it was made a haracterization of the subject matter through enlargement analyses, ATG and ATD, elaborating three formulations that were burned in four different temperatures, 1175, 1200, 1250 and 1300 degrees centigrade up to 30 minutes. After the burning, the subjects were submitted to water absorbing tests, linear retreating, apparent porosity, apparent specific mass, resistance to flexibility and MEV. For one of the mixtures it was obtained demanded properties for a semi porous material
Resumo:
Companies involved in kaolin mining and treatment represent an important area of industrial development in Brazil, significantly contribution to the worldwide production of such mineral. As a result, large volumes of kaolin residue are constantly generated and abandoned in the environment, negatively contributing to its preservation. In this scenario, the objective of the present study was to characterize the residue generated from kaolin mining as well as to assess its potential use as raw material for the production of ceramic tiles. Ceramic mixtures were prepared from raw materials characterized by X-ray fluorescence, X-ray diffraction, particle size analysis and thermal analysis. Three compositions were prepared using kaolin residue contents of 10%, 20% and 30%. Samples were uniaxially pressed, fired at 1200ºC and characterized aiming at establishing their mineralogical composition, water absorption, apparent porosity, specific mass, linear retraction and modulus of rupture. The results showed that the residue basically consisted of kaolinite and successfully replaced raw kaolin in the preparation of ceramic title formulations without significantly affecting the properties of the fired material
Resumo:
The red ceramics and structural ceramics, as they are known, include ceramic materials made by blocks of seals and structures, bricks, tiles, smail flagstones manacles, rustic floors and ornamental materials. Their fabrication uses raw material such as clay and clay sites, with some content of impurity. It has good durability and mechanical strength to compression, low cost, making it one of the mainly used materials in civil engineering. The incorporation of many industrial activities residue to ceramic products is a technological alternative for reducing the environmental impact caused by its carefree disposal. This incorporation can promote chemical change and inertness of metals from residue, by fixation in the glassy phase of ceramic during the burning stage. The main aim of this project is to study the technical feasibility of the addition of ceramic oven ash into formulations of mass for structural ceramics. In this project two kinds of clay (plastic and non-plastic) were used, as well as the ash from firewood used in the process of burning of structural ceramics. A group of experiments was outlined, which permitted the evaluation of the influence of the burning cycle in different temperatures of the ash content in formulations for ceramic blocks through technological properties, mechanical behavior and microstructure. Five samples were processed of each one of the masses of plastic and non-plastic clay without addition of ash and with addition of ash on the percentages of 10 % and 20 %, for temperatures of 850 °C, 950 °C, 1050 °C and 1150 °C, obtained through sinterization process. Among the studied compositions, the one which presented best performance was the mass of clay with 10 % of ash, at temperature of 1150 °C, with the smallest absorption of water, the smallest apparent porosity, specific apparent mass a bit over the others and greatest mechanical resistance to flexion. The composition made confirmed the technical feasibility of the use of ash in the mass for structural ceramics with maintenance of its necessary characteristics for its purposes
Resumo:
A housing unit was built to study the thermal performance, and of material using a composite made of gypsum and EPS ground. We used two techniques of construction, using blocks, and filling on the spot. Two compositions of the composite were studied. The blocks were fixed using conventional mortar. In the technical of filling on the spot were used PET bottles up inside the walls to provide mechanical and thermal resistance. Compression tests were realized according to the ABNT standard of sealing bricks. It is going to be shown an analysis of the thermal comfort through the use of thermocouples placed on the walls of the building, internally and externally. The manufacturing viability of houses, using recyclable materials, through the use of composite materials proposed will be demonstrated. The constructive aspects showing the advantages and disadvantages of the technique used also will be broached. The block used presents structural functions and thermal insulating, is low cost and represents an alternative to the use of EPS and PET bottles which are materials that end up occupying much space in the landfills, giving than an ecologically correct use. The results of thermal analysis shows the thermal comfort provided by the composite by the obtainment of a difference between the internal and external surfaces of the walls more exposed to the sun around 7º C. The average temperature of the air inside the building, around 28.0 º C was below the zone of thermal comfort recommended for countries with hot weather
Resumo:
Companies involved in emerald mining and treatment represent an important area of industrial development in Brazil, with significative contribution to the worldwide production of such mineral. As a result, large volumes of emerald waste are constantly generated and abandoned in the environment, negatively contributing to its preservation. By the other side the interest of the use of mining waste as additive in ceramic products has been growing from researchers in recent years. The ceramic industry is constantly seeking to the marked amplification for the sector and perfecting the quality of the products and to increase the variety of applications. The technology of obtaining of ceramic tiles that uses mining residues assists market niches little explored. In this scenario, the objective of the present study was to characterize the residue generated from emerald mining as well as to assess its potential use as raw material for the production of ceramic tiles. Ceramic mixtures were prepared from raw materials characterized by X-ray fluorescence, X-ray diffraction, particle size analysis and thermal analysis. Five compositions were prepared using emerald residue contents of 0%, 10%, 20%, 30% and 40%. Samples were uniaxially pressed, fired at 1000, 1100 and 1200ºC and characterized aiming at establishing their mineralogical composition, water absorption, apparent porosity, specific mass, linear retraction and modulus of rupture. The results shows that the emerald residue, basically consisted of 73% of (SiO2 + Al2O3) and 17,77% of (MgO + Na2O+ K2O) (that facilitates sintering), can be added to the ceramic tile materials with no detrimental effect on the properties of the sintered products
Resumo:
The adhesive mortars are a mixture of cement, sand, and additives to polymers that retain the mixing water and promotes adherence, being used in setting on various ceramic substrates. The sand used in the production of these mortars is from the riverbeds, and with the increasing restriction of these sands extraction by environmental agencies, and often having to be transported over long distances to the consumer center. This work aims to design and physical and mechanical characterization of ecological adhesive mortar with total replacement of natural sand by sand from the crushing of limestone, and the addition of mineral ash biomass of cane sugar in partial replacement cement used in the production of adhesive mortar , aiming compositions that meet the regulatory specifications for use adhesive mortar. Standardized tests to determine the tensile bond strength (NBR 14081-4), determination of open time (NBR 14081-3) and determination of slip (NBR 14081-5) were performed. Were also conducted trials squeeze flow in different formulation, the mortar with addition of 15 % gray biomass of cane sugar for cement mortars as well as the total replacement of natural sand by sand limestone crushing, got the best performance among the mortars studied, it was found that the addition of biomass to replace cement is perfectly feasible due to its pozzolanic activity, which contributed to this reduction in the cement matrix formation of adhesive mortar
Resumo:
The standardization of the bovine skin thickness in the leather industry generates a residue known as wet-blue . At the end of twentieth century, the brazilian industry discarded about 131 thousand tons of this residue in nature, provoking a great environmental liability. In this paper is presented the analyses of the termophysical properties, thermal and volumetric expansion performance of a composite of vegetable resin of castor oil plant (Ricinus communis) with load of industrial residue of leather "wet-blue", for application as thermal isolation material of warm surfaces. There were considered four percentile levels of residue load in the proportions in mass of 0%, 5%, 10% and 15%, added to the expansible resin of castor oil plant in two configurations: sawed leather and crushed leather in a smaller particle (powder) by grinding in a mill of balls. Twenty-one proof bodies were produced for termophysical properties analysis (three for each configuration) and four proof bodies for rehearsals of thermal acting. Analyses of thermal acting were done in test cameras. The results of the rehearsals were compared to those obtained considering the castor oil plant foam without residue addition. A small reduction of the thermal conductivity of the composite was observed in the proportion of 10% of leather residue in both configurations. Regarding thermal conductivity, calorific capacity and diffusivity, it was verified that the proposed composite showed very close values to the commercial insulating materials (glass wool, rock wool, EPS). It was still demonstrated the technical viability of the use of composite as insulating thermal for systems of low potency. The composite presented larger volumetric expansion with 15% of sawed residue of leather.
Resumo:
We built an experimental house on an UFRN´s land using blocks made by a composite consisting of cement, plaster, EPS, crushed rubber and sand. Several blocks were made from various compositions and we made preliminary tests of mechanical and thermal resistance, choosing the most appropriate proportion. PET bottles were used inside the block to provide thermal resistance. In this work, a second function was given to the bottles: to serve as a docking between the blocks, because the ends of the cylinders came out of each block on top as well as at the bottom, with the bottom cut, allowing to fit of the extremities of the upper cylinder of a block in the lower holes of the other one, which were formed by the cutting already mentioned. Minimum compression tests were performed according to ABNT standards for walls closing blocks (fence). With that house built, we did studies of thermal performance in order to ascertain conditions of comfort, checking external and internal temperatures in the walls and in the ambient, among other variables, such as wind speed and relative humidity. The resulting blocks provided adequate thermal insulation to the environment, where the walls presented differences up to 11.7 ºC between the outer and inner faces, getting the maximum temperature inside the house around 31 °C, within the so-called thermal comfort zone for warm climates. At the end of the experiments it was evident the effectiveness of that construction in order to provide thermal comfort in the internal environment of the house, as well as we could confirm the viability of building houses from recyclable materials, reducing the constructive costs, becoming a suitable alternative for low- incoming families. Moreover, besides the low cost, the proposal represents an alternative use of various recyclable materials, therefore considered an ecological solution
Resumo:
Acerola (Malpighia emarginata D.C.) is a red fruit widely cultivated in Brazil, especially in the Northeastern region. Its increasing demand is attributed to its high ascorbic acid contents. Besides ascorbic acid, widely known by its health-benefit effects, acerola is rich in anthocyanins, which contribute for the antioxidant power of the fruit. Acerola processing produces a bright-red pomace, usually discarded. The further processing of this pomace, in order to explore its antioxidant compounds, could enhance acerola market value and rentability of its processing. Both ascorbic acid and anthocyanins are highly susceptible to degradation, that can be delayed by microencapsulation, which consists on packing particles (core) in an edible matrix (wall material). This work has been made with the purpose of producing a microencapsulated acerola pomace extract, which could be used by the food industry as a functional ingredient with antioxidant and coloring properties. Antioxidant compounds were recovered by pressing the pomace diluted in a solvent (a citric acid aqueous solution), by using a central composite design, with two variables: citric acid concentration in the solvent (0-2%), and solvent: pomace mass ratio (2:1-6:1). The acerola pomace extract was then microencapsulated by spray drying. A central composite design was adopted, with three variables: inlet temperature of the spray dryer (170o-200oC), wall material: acerola solids mass ratio (2:1-5:1), and degree of maltodextrin replacement by cashew tree gum as wall material (0-100%). The cashew tree gum was used because of its similarity to arabic gum, which is regarded as the wall material by excellence. The following conditions were considered as optimal for extraction of anthocyanins and ascorbic acid: solvent/pomace ratio, 5:1, and no citric acid in the solvent. 82.47% of the anthocyanins were recovered, as well as 83.22% of the ascorbic acid. Anthocyanin and ascorbic acid retentions were favored by lower inlet temperatures, higher wall material: acerola solids mass ratio and higher maltodextrin replacement by cashew tree gum, which was presented as a promising wall material. The more adequate microencapsulation conditions, based not only on retention of antioxidant compounds but also on physical properties of the final powder, were the following: inlet temperature, 185oC; wall material: acerola solids mass ratio, 5:1, and minimum degree of maltodextrin replacement by cashew tree gum, 50%
Resumo:
This work presents the incorporation of an industrial polymeric waste into a petroleum asphalt cement with penetration grade 50-60 (CAP 50-60). The main goal of this research is the development of a polymer-modified asphalt, with improvements in its physical properties, in order to obtain a more resistant material to the traffic loads. Furthermore, the use of this polymeric waste will result in economic and environmental benefits. The CAP 50-60 used in this research was kindly supplied by LUBNOR Lubrificantes e Derivados de Petróleo do Nordeste (produced in Fazenda Belém Aracati - Ceará) and the industrial polymeric waste was provided by a button manufacturer industry, located in Rio Grande do Norte state. This polymeric waste represents an environmental problem due to its difficulty in recycling and disposal, being necessary the payment by the industry to a landfill. The difficulty in its reuse is for being this material a termofixed polymer, as a result, the button chips resulting from the molding process cannot be employed for the same purpose. The first step in this research was the characterization of the polymeric waste, using Differential Scanning Calorimetry (DSC) Infrared spectroscopy (IR spectroscopy), and Thermogravimetric analysis (TGA). Based on the results, the material was classified as unsaturated polyester. After, laboratory experiments were accomplished seeking to incorporate the polymeric waste into the asphalt binder according to a 23 experimental factorial design, using as main factors: the polymer content (2%, 7% and 14%), the temperature of the mixture (140 and 180 oC) and the reaction time (20 and 60 minutes). The characterization of the polymer-modified asphalt was accomplished by traditional tests, such as: penetration, ring and ball softening point, viscosity, ductility and flash point temperature. The obtained results demonstrated that the addition of the polymeric waste into the asphalt binder modified some of its physical properties. However, this addition can be considered as a feasible alternative for the use of the polymeric waste, which is a serious environmental and technological problem.
Resumo:
Brazil, one of the largest agricultural producers in the world, has managed in recent years to significantly improve its production. However, in response to this advance in the agro-industrial sector, the generation of agro-industrial residues has also increased. New technological alternatives have to be implemented in order to bring economic and rational use of this material and drying is one of the possible choices. Considering the great importance that bioactive compounds present for food science and technology, this research aims to evaluate the air-drying process of acerola residue in a tray convective drier under controlled temperature (60, 70 e 80ºC), air velocity (4.0, 5.0 e 6.0 m/s) and material width (0.5, 0.62 e 0.75 cm) by applying an experimental planning 23 + 3. Based on that, the impact on physical-chemical characteristics, color, bioactive compounds concentration and antioxidant activity of dried acerola waste was evaluated, having the in natura and freeze dried waste as control groups. Dried acerola residue presented natural pigments, mainly carotenoids (143.68 - 68.29 mg/g) and anthocyanins (290.92 - 90.11 mg/100 g), which explain the red and yellow instrumental color parameters observed. The acerola residue powder is also rich in phenolic compounds (3261.11 -2692.60 mgGAEeq/100g), proanthocyanidins (61.33-58.46 eq/100g), ascorbic acid (389.44 739.29 mg/100 g) and DPPH antioxidant activity (20.91 24.72 μg Trolox eq/g). Results show decreased concentration of phenolic compounds, anthocyanins, carotenoids, proanthocyanidins and ascorbic acid caused by the air-drying process. However, even after the observed drying losses, the acerola residue powder can be considered a high value food ingredient, considering the high bioactive compounds concentration found in the final product, as well as the colorimetric characterization and microbiological stability of the dried powder