87 resultados para Affonso Taunay
Resumo:
This paper presents the performanee analysis of traffie retransmission algorithms pro¬posed to the HCCA medium aeeess meehanism of IEEE 802.11 e standard applied to industrial environmen1. Due to the nature of this kind of environment, whieh has eleetro¬magnetic interferenee, and the wireless medium of IEEE 802.11 standard, suseeptible to such interferenee, plus the lack of retransmission meehanisms, refers to an impraetieable situation to ensure quality of service for real-time traffic, to whieh the IEEE 802.11 e stan¬dard is proposed and this environment requires. Thus, to solve this problem, this paper proposes a new approach that involves the ereation and evaluation of retransmission al-gorithms in order to ensure a levei of robustness, reliability and quality of serviee to the wireless communication in such environments. Thus, according to this approaeh, if there is a transmission error, the traffie scheduler is able to manage retransmissions to reeo¬ver data 10s1. The evaluation of the proposed approaeh is performed through simulations, where the retransmission algorithms are applied to different seenarios, whieh are abstrae¬tions of an industrial environment, and the results are obtained by using an own-developed network simulator and compared with eaeh other to assess whieh of the algorithms has better performanee in a pre-defined applieation
Resumo:
The sharing of knowledge and integration of data is one of the biggest challenges in health and essential contribution to improve the quality of health care. Since the same person receives care in various health facilities throughout his/her live, that information is distributed in different information systems which run on platforms of heterogeneous hardware and software. This paper proposes a System of Health Information Based on Ontologies (SISOnt) for knowledge sharing and integration of data on health, which allows to infer new information from the heterogeneous databases and knowledge base. For this purpose it was created three ontologies represented by the patterns and concepts proposed by the Semantic Web. The first ontology provides a representation of the concepts of diseases Secretariat of Health Surveillance (SVS) and the others are related to the representation of the concepts of databases of Health Information Systems (SIS), specifically the Information System of Notification of Diseases (SINAN) and the Information System on Mortality (SIM)
Resumo:
This paper describes the design, implementation and enforcement of a system for industrial process control based on fuzzy logic and developed using Java, with support for industrial communication protocol through the OPC (Ole for Process Control). Besides the java framework, the software is completely independent from other platforms. It provides friendly and functional tools for modeling, construction and editing of complex fuzzy inference systems, and uses these logical systems in control of a wide variety of industrial processes. The main requirements of the developed system should be flexibility, robustness, reliability and ease of expansion
Resumo:
A neuro-fuzzy system consists of two or more control techniques in only one structure. The main characteristic of this structure is joining one or more good aspects from each technique to make a hybrid controller. This controller can be based in Fuzzy systems, artificial Neural Networks, Genetics Algorithms or rein forced learning techniques. Neuro-fuzzy systems have been shown as a promising technique in industrial applications. Two models of neuro-fuzzy systems were developed, an ANFIS model and a NEFCON model. Both models were applied to control a ball and beam system and they had their results and needed changes commented. Choose of inputs to controllers and the algorithms used to learning, among other information about the hybrid systems, were commented. The results show the changes in structure after learning and the conditions to use each one controller based on theirs characteristics
Resumo:
Foundation Fieldbus Industrial networks are the high standard technology which allows users to create complex control logic and totally decentralized. Although being so advanced, they still have some limitations imposed by their own technology. Attempting to solve one of these limitations, this paper describes how to design a Fuzzy controller in a Foundation Fieldbus network using their basic elements of programming, the functional blocks, so that the network remains fully independent of other devices other than the same instruments that constitute it. Moreover, in this work was developed a tool that aids this process of building the Fuzzy controller, setting the internal parameters of functional blocks and informing how many and which blocks should be used for a given structure. The biggest challenge in creating this controller is exactly the choice of blocks and how to arrange them in order to effectuate the same functions of a Fuzzy controller implemented in other kind of environment. The methodology adopted was to divide each one of the phases of a traditional Fuzzy controller and then create simple structures with the functional blocks to implement them. At the end of the work, the developed controller is compared with a Fuzzy controller implemented in a mathematical program that it has a proper tool for the development and implementation of Fuzzy controllers, obtaining comparatives graphics of performance between both
Resumo:
This dissertation describes the implementation of a WirelessHART networks simulation module for the Network Simulator 3, aiming for the acceptance of both on the present context of networks research and industry. For validating the module were imeplemented tests for attenuation, packet error rate, information transfer success rate and battery duration per station
Resumo:
The evolution of automation in recent years made possible the continuous monitoring of the processes of industrial plants. With this advance, the amount of information that automation systems are subjected to increased significantly. The alarms generated by the monitoring equipment are a major contributor to this increase, and the equipments are usually deployed in industrial plants without a formal methodology, which entails an increase in the number of alarms generated, thus overloading the alarm system and therefore the operators of such plants. In this context, the works of alarm management comes up with the objective of defining a formal methodology for installation of new equipment and detect problems in existing settings. This thesis aims to propose a set of metrics for the evaluation of alarm systems already deployed, so that you can identify the health of this system by analyzing the proposed indices and comparing them with parameters defined in the technical norms of alarm management. In addition, the metrics will track the work of alarm management, verifying if it is improving the quality of the alarm system. To validate the proposed metrics, data from actual process plants of the petrochemical industry were used
Resumo:
The present work has as objective to present a method of project and implementation of controllers PID, based on industrial instrumentation. An automatic system of auto-tunning of controllers PID will be presented, for systems of first and second order. The software presented in this work is applied in controlled plants by PID controllers implemented in a CLP. Software is applied to make the auto-tunning of the parameters of controller PID of plants that need this tunning. Software presents two stages, the first one is the stage of identification of the system using the least square recursive algorithm and the second is the stage of project of the parameters of controller PID using the root locus algorithm. An important fact of this work is the use of industrial instrumentation for the accomplishment of the experiments. The experiments had been carried through in controlled real plants for controllers PID implemented in the CLP. Thus has not only one resulted obtained with theoreticians experiments made with computational programs, and yes resulted obtained of real systems. The experiments had shown good results gotten with developed software
Resumo:
This work shows a study about the Generalized Predictive Controllers with Restrictions and their implementation in physical plants. Three types of restrictions will be discussed: restrictions in the variation rate of the signal control, restrictions in the amplitude of the signal control and restrictions in the amplitude of the Out signal (plant response). At the predictive control, the control law is obtained by the minimization of an objective function. To consider the restrictions, this minimization of the objective function is done by the use of a method to solve optimizing problems with restrictions. The chosen method was the Rosen Algorithm (based on the Gradient-projection). The physical plants in this study are two didactical systems of water level control. The first order one (a simple tank) and another of second order, which is formed by two tanks connected in cascade. The codes are implemented in C++ language and the communication with the system to be done through using a data acquisition panel offered by the system producer
Resumo:
Industrial automation networks is in focus and is gradually replacing older architectures of systems used in automation world. Among existing automation networks, most prominent standard is the Foundation Fieldbus (FF). This particular standard was chosen for the development of this work thanks to its complete application layer specification and its user interface, organized as function blocks and that allows interoperability among different vendors' devices. Nowadays, one of most seeked solutions on industrial automation are the indirect measurements, that consist in infering a value from measures of other sensors. This can be made through implementation of the so-called software sensors. One of the most used tools in this project and in sensor implementation are artificial neural networks. The absence of a standard solution to implement neural networks in FF environment makes impossible the development of a field-indirect-measurement project, besides other projects involving neural networks, unless a closed proprietary solution is used, which dos not guarantee interoperability among network devices, specially if those are from different vendors. In order to keep the interoperability, this work's goal is develop a solution that implements artificial neural networks in Foundation Fieldbus industrial network environment, based on standard function blocks. Along the work, some results of the solution's implementation are also presented
Resumo:
The main task and one of the major mobile robotics problems is its navigation process. Conceptualy, this process means drive the robot from an initial position and orientation to a goal position and orientation, along an admissible path respecting the temporal and velocity constraints. This task must be accomplished by some subtasks like robot localization in the workspace, admissible path planning, trajectory generation and motion control. Moreover, autonomous wheeled mobile robots have kinematics constraints, also called nonholonomic constraints, that impose the robot can not move everywhere freely in its workspace, reducing the number of feasible paths between two distinct positions. This work mainly approaches the path planning and trajectory generation problems applied to wheeled mobile robots acting on a robot soccer environment. The major dificulty in this process is to find a smooth function that respects the imposed robot kinematic constraints. This work proposes a path generation strategy based on parametric polynomials of third degree for the 'x' and 'y' axis. The 'theta' orientation is derived from the 'y' and 'x' relations in such a way that the generated path respects the kinematic constraint. To execute the trajectory, this work also shows a simple control strategy acting on the robot linear and angular velocities
Resumo:
The main objective of work is to show procedures to implement intelligent control strategies. This strategies are based on fuzzy scheduling of PID controllers, by using only standard function blocks of this technology. Then, the standardization of Foundation Fieldbus is kept. It was developed an environment to do the necessary tests, it validates the propose. This environment is hybrid, it has a real module (the fieldbus) and a simulated module (the process), although the control signals and measurement are real. Then, it is possible to develop controllers projects. In this work, a fuzzy supervisor was developed to schedule a network of PID controller for a non-linear plant. Analyzing its performance results to the control and regulation problem
Resumo:
The structure of Industrial Automation bases on a hierarchical pyramid, where restricted information islands are created. Those information islands are characterized by systems where hardware and software used are proprietors. In other words, they are supplied for just a manufacturer, doing with that customer is entailed to that supplier. That solution causes great damages to companies. Once the connection and integration with other equipments, that are not of own supplier, it is very complicated. Several times it is impossible of being accomplished, because of high cost of solution or for technical incompatibility. This work consists to specify and to implement the visualization module via Web of GERINF. GERINF is a FINEP/CTPetro project that has the objective of developing a software for information management in industrial processes. GERINF is divided in three modules: visualization via Web, compress and storage and communication module. Are presented results of the utilization of a proposed system to information management of a Natural Gas collected Unit of Guamar´e on the PETROBRAS UN-RNCE.
Resumo:
Este trabalho apresenta o desenvolvimento de um método de coordenação e cooperação para uma frota de mini-robôs móveis. O escopo do desenvolvimento é o futebol de robôs. Trata-se de uma plataforma bem estruturada, dinâmica e desenvolvida no mundo inteiro. O futebol de robôs envolve diversos campos do conhecimento incluindo: visão computacional, teoria de controle, desenvolvimento de circuitos microcontrolados, planejamento cooperativo, entre outros. A título de organização os sistema foi dividido em cinco módulos: robô, visão, localização, planejamento e controle. O foco do trabalho se limita ao módulo de planejamento. Para auxiliar seu desenvolvimento um simulador do sistema foi implementado. O simulador funciona em tempo real e substitui os robôs reais. Dessa forma os outros módulos permanecem praticamente inalterados durante uma simulação ou execução com robôs reais. Para organizar o comportamento dos robôs e produzir a cooperação entre eles foi adotada uma arquitetura hierarquizada: no mais alto nível está a escolha do estilo de jogo do time; logo abaixo decide-se o papel que cada jogador deve assumir; associado ao papel temos uma ação específica e finalmente calcula-se a referência de movimento do robô. O papel de um robô dita o comportamento do robô na dada ocasião. Os papéis são alocados dinamicamente durante o jogo de forma que um mesmo robô pode assumir diferentes papéis no decorrer da partida
Resumo:
The using of supervision systems has become more and more essential in accessing, managing and obtaining data of industrial processes, because of constant and frequent developments in industrial automation. These supervisory systems (SCADA) have been widely used in many industrial environments to store process data and to control the processes in accordance with some adopted strategy. The SCADA s control hardware is the set of equipments that execute this work. The SCADA s supervision software accesses process data through the control hardware and shows them to the users. Currently, many industrial systems adopt supervision softwares developed by the same manufacturer of the control hardware. Usually, these softwares cannot be used with other equipments made by distinct manufacturers. This work proposes an approach for developing supervisory systems able to access process information through different control hardwares. An architecture for supervisory systems is first defined, in order to guarantee efficiency in communication and data exchange. Then, the architecture is applied in a supervisory system to monitor oil wells that use distinct control hardwares. The implementation was modeled and verified by using the formal method of the Petri networks. Finally, experimental results are presented to demonstrate the applicability of the proposed solution