55 resultados para viscosity and rheological


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Steam injection is a method usually applied to very viscous oils and consists of injecting heat to reduce the viscosity and, therefore, increase the oil mobility, improving the oil production. For designing a steam injection project it is necessary to have a reservoir simulation in order to define the various parameters necessary for an efficient heat reservoir management, and with this, improve the recovery factor of the reservoir. The purpose of this work is to show the influence of the coupled wellbore/reservoir on the thermal simulation of reservoirs under cyclic steam stimulation. In this study, the methodology used in the solution of the problem involved the development of a wellbore model for the integration of steam flow model in injection wellbores, VapMec, and a blackoil reservoir model for the injection of cyclic steam in oil reservoirs. Thus, case studies were developed for shallow and deep reservoirs, whereas the usual configurations of injector well existing in the oil industry, i.e., conventional tubing without packer, conventional tubing with packer and insulated tubing with packer. A comparative study of the injection and production parameters was performed, always considering the same operational conditions, for the two simulation models, non-coupled and a coupled model. It was observed that the results are very similar for the specified well injection rate, whereas significant differences for the specified well pressure. Finally, on the basis of computational experiments, it was concluded that the influence of the coupled wellbore/reservoir in thermal simulations using cyclic steam injection as an enhanced oil recovery method is greater for the specified well pressure, while for the specified well injection rate, the steam flow model for the injector well and the reservoir may be simulated in a non- coupled way

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The acidic galactan (AG) was obtained by extraction and proteolysis by acetone precipitation of the eggs of the mollusc Pomacea lineata. Its structure was elucidated by a combination of chemical analysis, the intrinsic viscosity and NMR spectroscopy 1D and 2D. Biological aspects of AG were evaluated by in vivo testing of healing and peritonitis induced (anti-inflammatory activity) and in vitro assays of cytotoxicity (MTT). This polymer showed a simple structure without the presence of sulfate and uronic acids in its structure. Its intrinsic viscosity and relative were evaluated at 0.44 ± 0.05 and 1.744± 0.07 dl.g-1. Spectroscopy showed that the AG has a constitution composed predominantly of β-D-galactosis, and β-D-glucosamine-NAcetil that comes in a smaller proportion in chain. The character of this acidic polysaccharide is given by the presence of pyruvate in the molecule, forming a cyclic acetal of six states, located in β-D-galactosis. The involvement of AG in the healing process was evaluated and the histological analysis revealed that there was so early in the process of healing, a great stimulation of macrophages with granuloma formation. Suggesting that AG may have promoted the advance of biological events required for tissue healing. In the trial of the GA-induced peritonitis showed dose dependent, demonstrating the anti-inflammatory effect at concentrations above 20 mg/kg, and confirming its inflammatory character and the concentration of 1mg/kg. In vitro tests used in the GA concentration of 1000 μg/mL showed proliferative activity by stimulating the growth of 3T3 cells, corroborating the findings in vivo and demonstrating the absence of cytotoxic activity

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Colon-specific drug delivery systems have attracted increasing attention from the pharmaceutical industry due to their ability of treating intestinal bowel diseases (IBD), which represent a public health problem in several countries. In spite of being considered a quite effective molecule for the treatment of IBD, mesalazine (5-ASA) is rapidly absorbed in the upper gastrointestinal tract and its systemic absorption leads to risks of adverse effects. The aim of this work was to develop a microparticulate system based on xylan and Eudragit® S- 100 (ES100) for colon-specific delivery of 5-ASA and evaluate the interaction between the polymers present in the systems. Additionaly, the physicochemical and rheological properties of xylan were also evaluated. Initially, xylan was extracted from corn cobs and characterized regarding the yield and rheological properties. Afterwards, 10 formulations were prepared in different xylan and ES100 weight ratios by spray-drying the polymer solutions in 0.6N NaOH and phosphate buffer pH 7.4. In addition, 3 formulations consisting of xylan microcapsules were produced by interfacial cross-linking polymerization and coated by ES100 by means of spray-drying in different polymer weight ratios of xylan and ES100. The microparticles were characterized regarding yield, morphology, homogeneity, visual aspect, crystallinity and thermal behavior. The polymer interaction was investigated by infrared spectroscopy. The extracted xylan was presented as a very fine and yellowish powder, with mean particle size smaller than 40μm. Regarding the rheological properties of xylan, they demonstrated that this polymer has a poor flow, low density and high cohesiveness. The microparticles obtained were shown to be spherical and aggregates could not be observed. They were found to present amorphous structure and have a very high thermal stability. The yield varied according to the polymer ratios. Moreover, it was confirmed that the interaction between xylan and ES100 occurs only by means of physical aggregation

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Oil Measurement Evaluation Laboratory (LAMP), located in the Federal University of Rio Grande do Norte (UFRN), has as main goal to evaluate flow and BS&W meters, where the simulation of a bigger number of operation variable in field, guarantees a less uncertain evaluation. The objective of this work is to purpose a heating system design and implementation, which will control the temperature safely and efficiently in order to evaluate and measure it. Temperature is one of the variables which influence the flow and BS&W accurate measurement, directly affecting the fluid viscosity and density in the experiment. To project the heating system it is of great importance to take the laboratory requirements, conditions and current restrictions into consideration. Three alternatives were evaluated: heat exchanger, internal resistance and external resistance. After the analyses are made in order to choose the best alternative for the heating system in the laboratory, control strategies were determined for it, PID control methods in combination with fuzzy logic were used. Results showed a better performance with fuzzy logic than with classic PID

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The method of artificial lift of progressing cavity pump is very efficient in the production of oils with high viscosity and oils that carry a great amount of sand. This characteristic converted this lift method into the second most useful one in oil fields production. As it grows the number of its applications it also increases the necessity to dominate its work in a way to define it the best operational set point. To contribute to the knowledge of the operational method of artificial lift of progressing cavity pump, this work intends to develop a computational simulator for oil wells equipped with an artificial lift system. The computational simulator of the system will be able to represent its dynamic behavior when submitted to the various operational conditions. The system was divided into five subsystems: induction motor, multiphase flows into production tubing, rod string, progressing cavity pump and annular tubing-casing. The modeling and simulation of each subsystem permitted to evaluate the dynamic characteristics that defined the criteria connections. With the connections of the subsystems it was possible to obtain the dynamic characteristics of the most important arrays belonging to the system, such as: pressure discharge, pressure intake, pumping rate, rod string rotation and torque applied to polish string. The shown results added to a friendly graphical interface converted the PCP simulator in a great potential tool with a didactic characteristic in serving the technical capability for the system operators and also permitting the production engineering to achieve a more detail analysis of the dynamic operational oil wells equipped with the progressing cavity pump

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mortar is a type of adhesive products used in large scale in construction, it is a function of its variety and ease of application . Although industrialized product and endowed with technology in its production is very frequent occurrence of the same pathology , which causes frequent damage and losses in the construction industry. Faced with this real market situation , the technical and scientific study of the effects of the addition of diatomite on the rheological and mechanical behavior of adhesive mortars are needed. This work back as a suggestion the use of diatomite as a mineral additive in formulations of adhesive mortars for partial replacement of cellulose based additives . The choice of using this mineral occurs through physical, chemical and rheological properties that justify its use in this product line , and is a raw material abundant in our region and can thus contribute positively to the minimization of direct costs cellulose -based additives . Industrial adhesive mortar used for comparison , was type AC1 . Formulations of adhesive mortar with diatomite held constant dosed quantities of sand, cement and the water / cement (w / c ) , or adhesive mortar formulations were developed with levels 10, 20, 30 and 40% of diatomite substituting part of the cellulose -based additives . These mortars were subjected to the following tests that define and evaluate the rheological and mechanical behavior of this type of mortar. The results attest the best performance of the adhesive mortar type AC1 with partial replacement of 30 % of the cellulose-based additive for diatomite

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The increasing demand for energy and the environment consequences derived from the use of fossil energy, beyond the future scarcity of the oil that currently is the main power plant of the world, it stimulated the research around the production of biodiesel. In this work the synthesis of biodiesel of cotton in the methyl route was carried through, for had been in such a way used catalyst commercial homogeneous, Na-Methylat and the K-Methylat, aiming to the evaluation of the efficiency of them. An experimental planning 23 was elaborated aiming to evaluate the influence of the variable (molar reason oil/alcohol, % of catalyst and temperature) in the process as well as indicating the excellent point of operation in each case. The biodiesel was analyzed by gaseous chromatography, indicating a conversion of 96,79% when used Na-Methylat® as catalytic, and 95,65% when the K-Methylat® was used. Optimum result found with regard to the conversion was obtained at the following conditions: molar reason oil/alcohol (1:8), temperature of 40°C and 1% of catalyst Na-Methylat, reaching a 96,79% conversion, being, therefore, above of the established for the European norm (96.5%). The analysis of regression showed that the only significant effect for a confidence level of 95%, was of the changeable temperature. The variance analysis evidenced that the considered model is fitted quite to the experimental response, being statistically significant; however it does not serve inside for make forecasts of the intervals established for each variable. The best samples were analyzed by infra-red (IR) that identified the strong bands of axial deformation C=O of methylic ester, characterized through analyses physicochemical that had indicated conformity with the norms of the ANP, that with the thermal and rheological analyses had together evidenced that biodiesel can be used as combustible alternative in substitution to diesel

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work studies the fabrication of spaghetti through the process at high temperatures through the use of flour added to flour and flaxseed meal, with the aim of evaluating the final product quality and estimate the cost of production. The values of moisture, ash, protein, wet gluten, gluten index, falling number and grain of flour and mixtures to test to be the possible use in mass manufacturing and technological criteria for compliance with current legislation. Spaghetti noodles type were manufactured by adding 10% and 20% flour and 10% and 20% flaxseed meal with performance of physical-chemical, sensory and rheological properties of the products. Further analysis was performed on the product acceptance and estimation of production cost in order to create subsidies to enable the introduction of products with greater acceptance and economic viability in the market by the food industry. On the rheology of the product test was cooking the pasta, specifying the volume increase, cooking time and percentage of solid waste. In the sensory evaluation was carried out the triangular test of product differentiation with 50 trained judges and acceptance testing by a hedonic scale with evaluation of the aspects color, taste, smell and texture. In defining the sensory profile of the product was performed with ADQ 9 judges recruited and trained at the factory, using unstructured scale of 9 cm, assessing the attributes of flavor of wheat, flax flavor, consistency, texture of raw pasta, raw pasta color and color of cooked pasta. The greater acceptance of product quality was good and the pasta with 20% flour, 10% followed by the full product, 10% and 20% flaxseed characterized the average quality of the criterion of loss analysis of solids, together with mass full commercial testing. In assessing the estimated cost of production, the two products more technologically feasible and acceptable (20% whole and 10% flaxseed) were evaluated in high temperature processes. With total cost of R $ 4,872.5 / 1,000 kg and R $ 5,354.9 / 1,000 kg respectively, the difference was related to the addition of lower inputs and higher added value in the market, flour and flaxseed meal. The comparative analysis of cases was confirmed the reduction in production time (10h), more uniform product to the drying process at high temperature compared to conventional

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The underground reservoirs of fuel retailing system represent an environmental threat, because once in bad conservation, these tanks allow fuel leakage and infiltration. For soil contaminated with fuel, such as diesel oil, the present study introduces the microemulsion systems used by the method of washing. In tests carried out in column with a sample of sandy soil artificially contaminated and previously characterized as to its void level to porosity, to permeability which is an important parameter concerning the study of the method of washing. While microemulsions were characterized for their viscosity and wettability, a variation of active matter was also done departing from the original formulation. The hydraulic diffusivity of the microemulsion was studied so as the injection of such fluid in a soil with sandy characteristics. The results of the extractions revealed the excellent performance of these systems which get to remove around 95% of diesel fuel. This proves the efficiency of the microemulsion in the process of removal of diesel fuel from the soil with the advantage of being a system easily obtainable and less aggressive to the environment when compared to organic solvents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The composition of petroleum may change from well to well and its resulting characteristics influence significantly the refine products. Therefore, it is important to characterize the oil in order to know its properties and send it adequately for processing. Since petroleum is a multicomponent mixture, the use of synthetic mixtures that are representative of oil fractions provides a better understand of the real mixture behavior. One way for characterization is usually obtained through correlation of physico-chemical properties of easy measurement, such as density, specific gravity, viscosity, and refractive index. In this work new measurements were obtained for density, specific gravity, viscosity, and refractive index of the following binary mixtures: n-heptane + hexadecane, cyclohexane + hexadecane, and benzene + hexadecane. These measurements were accomplished at low pressure and temperatures in the range 288.15 K to 310.95 K. These data were applied in the development of a new method of oil characterization. Furthermore, a series of measurements of density at high pressure and temperature of the binary mixture cyclohexane + n-hexadecane were performed. The ranges of pressure and temperature were 6.895 to 62.053 MPa and 318.15 to 413.15 K, respectively. Based on these experimental data of compressed liquid mixtures, a thermodynamic modeling was proposed using the Peng-Robinson equation of state (EOS). The EOS was modified with scaling of volume and a relatively reduced number of parameters were employed. The results were satisfactory demonstrating accuracy not only for density data, but also for isobaric thermal expansion and isothermal compressibility coefficients. This thesis aims to contribute in a scientific manner to the technological problem of refining heavy fractions of oil. This problem was treated in two steps, i.e., characterization and search of the processes that can produce streams with economical interest, such as solvent extraction at high pressure and temperature. In order to determine phase equilibrium data in these conditions, conceptual projects of two new experimental apparatus were developed. These devices consist of cells of variable volume together with a analytical static device. Therefore, this thesis contributed with the subject of characterization of hydrocarbons mixtures and with development of equilibrium cells operating at high pressure and temperature. These contributions are focused on the technological problem of refining heavy oil fractions

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study describes the stability and rheological behavior of suspensions of poly (N-isopropylacrylamide) (PNIPAM), poly (N-isopropylacrylamide)-chitosan (PNIPAMCS), and poly (N-isopropylacrylamide)-chitosan-poly (acrylic acid) (PNIPAM-CS-PAA) crosslinked particles sensitive to pH and temperature. These dual-sensitive materials were simply obtained by one-pot method, via free-radical precipitation copolymerization with potassium persulfate, using N,N -methylenebisacrylamide (MBA) as a crosslinking agent. Incorporation of the precursor materials into the chemical networks was confirmed by elementary analysis and infrared spectroscopy. The influence of external stimuli such as pH and temperature, or both, on particle behavior was investigated through rheological measurements, visual stability tests and analytical centrifugation. The PNIPAM-CS particles showed higher stability in acid and neutral media, whereas PNIPAM-CS-PAA particles were more stable in neutral and alkaline media, both below and above the LCST of poly (Nisopropylacrylamide) (stability data). This is due to different interparticle interactions, as well as those between the particles and the medium (also evidenced by rheological data), which were also influenced by the pH and temperature of the medium. Based on the results obtained, we found that the introduction of pH-sensitive polymers to crosslinked poly (Nisopropylacrylamide) particles not only produced dual-sensitive materials, but allowed particle stability to be adjusted, making phase separation faster or slower, depending on the desired application. Thus, it is possible to adapt the material to different media

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biodiesel is a fuel made up by mono-alkyl-esters of long chain fatty acids, derived from vegetable oils or animal fat. This fuel can be used in compression ignition engines for automotive propulsion or energy generation, as a partial or total substitute of fossil diesel fuel. Biodiesel can be processed from different mechanisms. Transesterification is the most common process for obtaining biodiesel, in which an ester compound reacts with an alcohol to form a new ester and a new alcohol. These reactions are normally catalyzed by the addition of an acid or a base. Initially sunflower, castor and soybean oil physicochemical properties are determined according to standard test methods, to evaluate if they had favorable conditions for use as raw material in the transesterification reaction. Sunflower, castor and soybean biodiesel were obtained by the methylic transesterification route in the presence of KOH and presented a yield above 93% m/m. The sunflower/castor and soybean/castor blends were studied with the aim of evaluating the thermal and oxidative stability of the biofuels. The biodiesel and blends were characterized by acid value, iodine value, density, flash point, sulfur content, and content of methanol and esters by gas chromatography (GC). Also studies of thermal and oxidative stability by Thermogravimetry (TG), Differential Scanning Calorimetry High Pressure (P-DSC) and dynamic method exothermic and Rancimat were carried out. Biodiesel sunflower and soybean are presented according to the specifications established by the Resolution ANP no 7/2008. Biodiesel from castor oil, as expected, showed a high density and kinematic viscosity. For the blends studied, the concentration of castor biodiesel to increased the density, kinematic viscosity and flash point. The addition of castor biodiesel as antioxidant in sunflower and soybean biodiesels is promising, for a significant improvement in resistance to autoxidation and therefore on its oxidative stability. The blends showed that compliance with the requirements of the ANP have been included in the range of 20-40%. This form may be used as a partial substitute of fossil diesel

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chitosan is a biopolymer derived from the shells of crustaceans, biodegradable, inexpensive and renewable with important physical and chemical properties. Moreover, the different modifications possible in its chemical structure generate new properties, making it an attractive polysaccharide owing to its range of potential applications. Polymers have been used in oil production operations. However, growing concern over environmental constraints has prompted oil industry to search for environmentally sustainable materials. As such, this study sought to obtain chitosan derivatives grafted with hydrophilic (poly(ethylene glycol), mPEG) and/or hydrophobic groups (n-dodecyl) via a simple (one-pot) method and evaluate their physicochemical properties as a function of varying pH using rheology, small-angle Xray scattering (SAXS), dynamic light scattering (DLS) and zeta potential. The chitosan derivatives were prepared using reductive alkylation under mild reaction conditions and the chemical structure of the polymers was characterized by nuclear magnetic resonance (1H NMR) and CHN elemental analysis. Considering a constant mPEG/Chitosan molar ratio on modification of chitosan, the solubility of the polymer across a wide pH range (acidic, neutral and basic) could only be improved when some of the amino groups were submitted to reacetylation using the one-pot method. Under these conditions, solubility is maintained even with the simultaneous insertion of n-dodecyl. On the other hand, the solubility of derivatives obtained only through mPEG incorporation using the traditional methodology, or with the ndodecyl group, was similar to that of its precursor. The hydrophilic group promoted decreased viscosity of the polymer solutions at 10 g/L in acid medium. However, at basic pH, both viscosity and thermal stability increased, as well as exhibited a pronounced pseudoplastic behavior, suggesting strong intermolecular associations in the alkaline medium. The SAXS results showed a polyelectrolyte behavior with the decrease in pH for the polymer systems. DLS analyses revealed that although the dilute polymer solutions at 1 g/L and pH 3 exhibited a high density of protonated amino groups along the polymer chain, the high degree of charge contributed significantly to aggregation, promoting increased particle size with the decrease in pH. Furthermore, the hydrophobic group also contributed to increasing the size of aggregates in solution at pH 3, whereas the hydrophilic group helped reduce their size across the entire pH range. Nevertheless, the nature of aggregation was dependent on the pH of the medium. Zeta potential results indicated that its values do not depend solely on the surface charge of the particle, but are also dependent on the net charge of the medium. In this study, water soluble associative polymers exhibit properties that can be of great interest in the petroleum industry

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sunscreen use is the most common photoprotection alternative used by the population, and so these products should offer improved protection with broad - spectrum, UVA and UVB protection . Vegetal substances have recently been considered as resources for sunscreen formulations due to their UV spectrum absorption and antioxidant properties. The Euterpe oleracea Mart., popularly known as açai, in its che mical composition contain polyphenols compounds, such as anthocyanins and flavonoids , to which antioxidant properties have been attributed . The aim of this work was to develop O/W sunscreens emulsions con taining açai glycolic extract ( AGE) and to evaluate both their physical stability , safety and photoprotective efficacy. The safety of the extract was evaluated by in vitro phototoxicity and cytotoxicity tests. Emulsions containing AGE and sunscreens were formulated using different types and concentrations o f polymeric surfactant (Acrylates/C 10 - 30 Alkyl Acrylate Crosspolymer and Sodium Polyacrylate). The influence of two rheology modifiers (Polyacrylamide (and) C13 - 14/Isoparaffin (and) Laureth - 7 and Carbomer) on the stability was also investigated. Physical stability was evaluated by preliminary and accelerated studies. The macroscopic analyses, pH value and electrical conductivity determinations and rheological behavior were evaluated at different time intervals . The in vivo Sun Protect Factor ( SPF ) was determined according to the International Sun Protection Factor Test Method – 2006 and UVA Protection Factor (FPUVA), wavelength critical and reason SPF/FPUVA were performed according to the method Colipa 2011. The extract did not present cytotoxic ity and phototoxic ity . The stable emulsion containing 5% glycolic extract of açai and 1.0% of sodium poliyacrylate showed pseudoplastic and thixotropic behavior . The sunscreen emulsion containing açai glycolic extract showed a SPF 25.3 and PF - UVA = 14.97. Whe n açai glycolic extract was added in the emulsion sunscreen, no significant increase in the in vivo SPF and FPUVA values were observed. This emulsion showed 1.69 of the SPF/PF - UVA ratio and a critical wavelength value of 378 nm, so may therefore be conside red a sunscreen with UVA and UVB protection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Opuntia fícus - indica (L.) Mill is a cactacea presents in the Caatinga ecosystem and shows in its chemical c omposition flavonoids, galacturonic acid and sugars. Different hydroglicolic (EHG001 and EHG002) and hydroethanolic subsequently lyophilized (EHE001 and EHE002) extracts were developed. The EHE002 had his preliminary phytochemical composition investigated by thin layer chromatography (TLC) and we observed the predominance of flavonoids. Different formulations were prepared as emulsions with Sodium Polyacrylate (and) Hydrogenated Polydecene (and) Trideceth - 6 (Rapithix® A60), and Polyacrylamide (and) C13 - 14 I soparaffin (and) Laureth - 7 (Sepigel® 305), and gel with Sodium Polyacrylate (Rapithix® A100). The sensorial evaluation was conducted by check - all - that - apply method. There were no significant differences between the scores assigned to the formulations, howe ver, we noted a preference for those formulated with 1,5% of Rapithix® A100 and 3,0% of Sepigel® 305. These and the formulation with 3% Rapithix® A60 were tested for preliminary and accelerated stability. In accelerated stability study, samples were stored at different temperatures for 90 days. Organoleptic characteristics, the pH values and rheological behavior were assessed. T he emulsions formulated with 3,0% of Sepigel® 305 and 1,5% of Rapithix® A60 w ere stable with pseudoplastic and thixotropic behavior . The moisturizing clinical efficacy of the emulsions containing 3,0% of Sepigel® 305 containing 1 and 3% of EHG001 was performed using the capacitance method (Corneometer®) and transepidermal water lost – TEWL evaluation ( Tewameter®). The results showed t hat the formulation with 3% of EHG001 increased the skin moisturizing against the vehicle and the extractor solvent formulation after five hours. The formulations containing 1 and 3% of EHG001 increased skin barrier effect by reducing transepidermal water loss up to four hours after application.