31 resultados para mecânica quântica
Resumo:
This Master of Science Thesis deals with applying DEA (Data Envelopment Analysis) to the academic performance evaluation of graduate programs in Brazil, exploring it on a Mechanical and Production Engineering Program 2001-2003 data. The data used is that of the national assessment carried by CAPES, the governmental body in charge for graduate program assessment and certification. It is used the CCR output oriented DEA model, the CCR-Output with Assurance Region, and Window Analysis. The main findings are first that the CCR has the concerning problem of zero values of weights of outputs that is not appropriate in a sense that a graduate program has the higher efficiency score zeroing some output (e.g., number of academic papers published). Secondly, the Assurance Region method proved useful. Third, the Window Analysis also gave some light to the consistency of the performance in the time frame analysed. Also, the analysis results in the understanding that the Mechanics and Production Engineering should not be assessed jointly like currently applied by CAPES and rather should be assessed in its own field separately. Finally, the result of the DEA analysis showed some serious inconsistencies with the CAPES method. Graduate programs considered excellent has got low performance score and vice versa. This Thesis provides a strong argument in order to use DEA at least as a complimentary methodology for graduate program performance evaluation in Brazil
Resumo:
Metal/ceramic interfaces using zirconia have dominated the industrial applications in the last decade, due to the high mechanical strength and fracture toughness of zirconia, especially at temperatures below 300 ºC. Also noteworthy is the good ionic conductivity in high temperatures of this component. In this work joining between ZrO2 Y-TZP and ZrO2 Mg-PSZ with austenitic stainless steel was studied. These joints were brazed at high-vacuum after mechanical metallization with Ti using filler alloys composed by Ag-Cu and Ag-Cu-Ni. The influence of the metallization, and the affinity between the different groups (ceramic / filler alloys) was evaluated, in order to achieve strong metal/ceramic joints. Evaluation of joints and interfaces, also the characterization of base materials was implemented using various techniques, such as: x-ray diffraction, leak test, three-point flexural test and scanning electron microscopy with chemical analysis. The microstructural analysis revealed physical and chemical bonds in the metal/ceramic interfaces, providing superior leak proof joints and stress cracking, in order to a good joint in all brazed samples. Precipitation zones and reaction layers with eutetic characteristics were observed between the steel and the filler metal
Resumo:
Space Science was built using a composite made of plaster, EPS, shredded tires, cement and water. Studies were conducted to thermal and mechanical resistance. Inside the mold EPS plates were placed in order to obtain a higher thermal resistance on the wall constructed, as well as to give it an end environmentally friendly in view of both the tire and the EPS occupy a large space in landfills and year need to be degraded when released into the environment. Compression tests were performed according to ABNT blocks to seal, measurements of the temperature variation in the external and internal walls using a laser thermometer and check the temperature of the indoor environment using a thermocouple attached to a digital thermometer. The experiments demonstrated the heat provided by the composite values from the temperature difference between the internal and external surfaces on the walls, reaching levels of 12.4 ° C and room temperature in the interior space of the Science of 33.3 ° C, remaining within the zone thermal comfort for hot climate countries. It was also demonstrated the proper mechanical strength of such a composite for sealing walls. The proposed use of the composite can contribute to reducing the extreme housing shortage in our country, producing popular homes at low cost and with little time to work
Resumo:
With the current growth in consumption of industrialized products and the resulting increase in garbage production, their adequate disposal has become one of the greatest challenges of modern society. The use of industrial solid residues as fillers in composite materials is an idea that emerges aiming at investigating alternatives for reusing these residues, and, at the same time, developing materials with superior properties. In this work, the influence of the addition of sand, diatomite, and industrial residues of polyester and EVA (ethylene vinyl acetate), on the mechanical properties of polymer matrix composites, was studied. The main objective was to evaluate the mechanical properties of the materials with the addition of recycled residue fillers, and compare to those of the pure polyester resin. Composite specimens were fabricated and tested for the evaluation of the flexural properties and Charpy impact resistance. After the mechanical tests, the fracture surface of the specimens was analyzed by scanning electron microscopy (SEM). The results indicate that some of the composites with fillers presented greater Young s modulus than the pure resin; in particular composites made with sand and diatomite, where the increase in modulus was about 168 %. The composites with polyester and EVA presented Young s modulus lower than the resin. Both strength and maximum strain were reduced when fillers were added. The impact resistance was reduced in all composites with fillers when compared to the pure resin, with the exception of the composites with EVA, where an increase of about 6 % was observed. Based on the mechanical tests, microscopy analyses and the compatibility of fillers with the polyester resin, the use of industrial solid residues in composites may be viable, considering that for each type of filler there will be a specific application
Resumo:
This dissertation briefly presents the random graphs and the main quantities calculated from them. At the same time, basic thermodynamics quantities such as energy and temperature are associated with some of their characteristics. Approaches commonly used in Statistical Mechanics are employed and rules that describe a time evolution for the graphs are proposed in order to study their ergodicity and a possible thermal equilibrium between them
Resumo:
The aim of this work is to derive theWard Identity for the low energy effective theory of a fermionic system in the presence of a hyperbolic Fermi surface coupled with a U(1) gauge field in 2+1 dimensions. These identities are important because they establish requirements for the theory to be gauge invariant. We will see that the identity associated Ward Identity (WI) of the model is not preserved at 1-loop order. This feature signalizes the presence of a quantum anomaly. In other words, a classical symmetry is broken dynamically by quantum fluctuations. Furthermore, we are considering that the system is close to a Quantum Phase Transitions and in vicinity of a Quantum Critical Point the fermionic excitations near the Fermi surface, decay through a Landau damping mechanism. All this ingredients need to be take explicitly to account and this leads us to calculate the vertex corrections as well as self energies effects, which in this way lead to one particle propagators which have a non-trivial frequency dependence
Resumo:
The aim of this study was to comparatively evaluate the mechanical strength of squared and rectangular 2.0 mm system miniplates comparing them to the standard configuration with 2 straight miniplates in stabilizing fractures in the anterior mandible. Ninety synthetic polyurethane mandible replicas were used in mechanical test. The samples were divided into six groups of three different methods for fixation. Groups 1, 2 and 3 showed complete fractures in symphysis, characterized by a linear separation between the medial incisor, and groups 4, 5 and 6 showed complete fractures in parasymphysis with oblique design. Groups 1 and 4 were represented by the standard technique with two straight miniplates parallel to each other. Groups 2 and 5 were stabilized by squared miniplates and groups 3 and 6 were fixed by rectangular design. Each group was subjected to a mechanical test at a displacement speed of 10 mm/min on a universal testing machine, receiving linear vertical load on the region of the left first molar. The values of the maximum load and when displacements reached 5 mm were obtained and statistically analyzed by calculating the confidence interval of 95%. Fixation systems using squared (G2) and rectangular (G3) miniplates obtained similar results. No statistically significant differences with respect to the maximum load and the load at 5 mm displacement were found when compared to standard method in symphyseal fractures (G1). In parasymphysis the fixation method using squared miniplates (G5) obtained results without significant differences regarding the maximum load and the load at 5 mm when compared to the standard configuration (G4). The fixation method using rectangular miniplates (G6) showed inferior results which were statistically significant when compared to the standard configuration (G4) for parasymphysis fractures. The mechanical behavior of the fixation methods was similar, except when rectangular miniplates were used. The fixation methods showed better results with statistical significance in symphyseal fractures
Resumo:
The use of composite materials for the construction industry has been the subject of numerous scientific papers in Brazil and in the world. One of the factors that motivate this quest is the housing deficit that countries especially the third world face. In Brazil this deficit reaches more than 6.5 million homes, around 12% of all US households . This paper presents a composite that was obtained from waste generated in processes for the production of granite and marble slabs, cement, gypsum, sand, crushed EPS and water. These wastes cause great damage to the environment and are thrown into landfi lls in bulk. The novelty of the work is in the combined study thermal, mechanical and acoustic composite obtained in real situation of rooms that are part of an experimental housing. Many blocks were made from cement compositions, plaster, foam, sand, marb le and / or granite, preliminary tests of mechanical and thermal resistance were made by choosing the most appropriate proportion. Will be given the manufacturing processes and assembly units 500 units 10 x 80 x 28 cm produced for the construction of an ex perimental home. We studied what kind of block and residue, marble or granite, made it more feasible for the intended purpose. The mechanical strength of the produced blocks were above 3.0 MPa. The thermal resistance of the blocks was confirmed by the maxi mum temperature difference between the inner and outer walls of rooms built around 8.0 ° C. The sound absorption for optimal room was around 31%. Demonstrated the feasibility of using the blocks manufactured with composite material proposed for construction.
Resumo:
In the central nervous system (CNS) of mammalian, fast synaptic transmission between nerve cells is performed primarily by α-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid (AMPA) receptors, an ionotropic glutamate receptor that is related with learning, memory and homeostasis of the nervous system. Impairments in their functions are correlated with development of many brain desorders, such as epilepsy, schizophrenia, autism, Parkinson and Alzheimer. The use of willardiine analogs has been shown a powerful tool to understanding of activation and desensitization mechanisms of this receptors, because the modification of a single ligand atom allows the observation of varying levels of efficacy. In this work, taking advantage of Fluorine Willardiine (1.35Å), Hydrogen Willardiine (1.65Å), Bromine Willardiine (1.8Å) and Iodine Willardiine (2.15Å) structures co-crystalized with GluA2 with codes 1MQI, 1MQJ, 1MQH and 1MQG, we attempted to energetically differentiate the four ligands efficacy. The complexes were submitted to energetic calculations based on density functional theory (DFT), under the optics of molecular fractionation with conjugate caps (MFCC) method. Obtained results show a relationship between the energetic values and willardiines efficacy order (FW> HW > BrW > IW), also show the importance of E705, R485, Y450, S654, T655, T480 e P478 as the amino acids that contribute most strongly with the interaction of four partial agonists. Furthermore, we outlined the M708 behaviour, attracted by FW and HW ligands, and repels by BrW and IW. With the datas reported on this work, it is possible for a better understanding of the AMPA receptor, which can serve as an aid in the development of new drugs for this system.
Resumo:
In the last decades, analogue modelling has been used in geology to improve the knowledge of how geological structures are nucleated, how they grow and what are the main important points in such processes. The use of this tool in the oil industry, to help seismic interpretations and mainly to search for structural traps contributed to disseminate the use of this tool in the literature. Nowadays, physical modelling has a large field of applications, since landslide to granite emplacement along shear zones. In this work, we deal with physical modelling to study the influence of mechanical stratifications in the nucleation and development of faults and fractures in a context of orthogonal and conjugated oblique basins. To simulate a mechanical stratigraphy we used different materials, with distinct physical proprieties, such as gypsum powder, glass beads, dry clay and quartz sand. Some experiments were run along with a PIV (Particle Image Velocimetry), an instrument that shows the movement of the particles to each deformation moment. Two series of experiments were studied: i) Series MO: We tested the development of normal faults in a context of an orthogonal (to the extension direction) basin. Experiments were run taking into account the change of materials and strata thickness. Some experiments were done with sintectonic sedimentation. We registered differences in the nucleation and growth of faults in layers with different rheological behavior. The gypsum powder layer behaves in a more competent mode, which generates a great number of high angle fractures. These fractures evolve to faults that exhibit a higher dip than when they cross less competent layers, like the one of quartz sand. This competent layer exhibits faulted blocks arranged in a typical domino-style. Cataclastic breccias developed along the faults affecting the competent layers and showed different evolutional history, depending on the deforming stratigraphic sequence; ii) Series MOS2: Normal faults were analyzed in conjugated sub-basins (oblique to the extension direction) developed in a sequence with and without rheological contrast. In experiments with rheological contrast, two important grabens developed along the faulted margins differing from the subbasins with mechanical stratigraphy. Both experiments developed oblique fault systems and, in the area of sub-basins intersection, faults traces became very curved.
Resumo:
The cells unitaria of the solid oxide fuel cell are separated by means of interconnects, which serve as electrical contact between the cells. Lanthanum Chromite (LaCrO3) has been the most common material used as interconnect in solid oxide fuel cells. Reducing the operating temperature around 800 º C of cells to solid oxide fuel make possibilite the use of metallic interconnects as an alternative to ceramic LaCrO3. Metallic interconnects have advantages over ceramic interconnects such as high thermal conductivity, electricity, good ductility, low cost, good physical and mechanical properties. In this work evaluate the thermo-mechanical properties of the metallic substrate and coated metallic substrate with the ceramic LaCrO3 film via spray-pyrolysis, in order to demonstrate the feasibility of using this material as a component of a fuel cell solid oxide. The materials were characterized by X-ray diffraction, oxidation behavior, mechanical strength, optical microscopy (OM) and scanning electron microscopy (SEM). The X-ray diffraction proved the formation phase of the LaCrO3 on the metallic substrate and the identification of the phases formed after the oxidative test and mechanical strength at high temperature. The oxidation behavior showed the increased oxidation resistance of the coated metallic substrate. It was noted that the mechanical resistance to bending of the coated metallic substrate only increases at room temperature. The optical microscopy (OM) has provided an assessment of both the metallic substrate and the LaCrO3 film deposited on the metal substrate that, in comparison with the micrographs obtained from SEM. The SEM one proved the formation of Cr2O3 layer on the metallic substrate and stability of LaCrO3 film after oxidative test, it can also observe the displacement of the ceramic LaCrO3 film after of mechanical testing and mapping of the main elements as chromium, manganese, oxygen, lanthanum in samples after the thermo-mechanical tests.
Resumo:
Oil wells subjected to cyclic steam injection present important challenges for the development of well cementing systems, mainly due to tensile stresses caused by thermal gradients during its useful life. Cement sheath failures in wells using conventional high compressive strength systems lead to the use of cement systems that are more flexible and/or ductile, with emphasis on Portland cement systems with latex addition. Recent research efforts have presented geopolymeric systems as alternatives. These cementing systems are based on alkaline activation of amorphous aluminosilicates such as metakaolin or fly ash and display advantageous properties such as high compressive strength, fast setting and thermal stability. Basic geopolymeric formulations can be found in the literature, which meet basic oil industry specifications such as rheology, compressive strength and thickening time. In this work, new geopolymeric formulations were developed, based on metakaolin, potassium silicate, potassium hydroxide, silica fume and mineral fiber, using the state of the art in chemical composition, mixture modeling and additivation to optimize the most relevant properties for oil well cementing. Starting from molar ratios considered ideal in the literature (SiO2/Al2O3 = 3.8 e K2O/Al2O3 = 1.0), a study of dry mixtures was performed,based on the compressive packing model, resulting in an optimal volume of 6% for the added solid material. This material (silica fume and mineral fiber) works both as an additional silica source (in the case of silica fume) and as mechanical reinforcement, especially in the case of mineral fiber, which incremented the tensile strength. The first triaxial mechanical study of this class of materials was performed. For comparison, a mechanical study of conventional latex-based cementing systems was also carried out. Regardless of differences in the failure mode (brittle for geopolymers, ductile for latex-based systems), the superior uniaxial compressive strength (37 MPa for the geopolymeric slurry P5 versus 18 MPa for the conventional slurry P2), similar triaxial behavior (friction angle 21° for P5 and P2) and lower stifness (in the elastic region 5.1 GPa for P5 versus 6.8 GPa for P2) of the geopolymeric systems allowed them to withstand a similar amount of mechanical energy (155 kJ/m3 for P5 versus 208 kJ/m3 for P2), noting that geopolymers work in the elastic regime, without the microcracking present in the case of latex-based systems. Therefore, the geopolymers studied on this work must be designed for application in the elastic region to avoid brittle failure. Finally, the tensile strength of geopolymers is originally poor (1.3 MPa for the geopolymeric slurry P3) due to its brittle structure. However, after additivation with mineral fiber, the tensile strength became equivalent to that of latex-based systems (2.3 MPa for P5 and 2.1 MPa for P2). The technical viability of conventional and proposed formulations was evaluated for the whole well life, including stresses due to cyclic steam injection. This analysis was performed using finite element-based simulation software. It was verified that conventional slurries are viable up to 204ºF (400ºC) and geopolymeric slurries are viable above 500ºF (260ºC)
Resumo:
The cobalt-chromium alloy is extensively used in the Odontology for the confection of metallic scaffolding in partial removable denture. During the last few years, it has been reported an increasing number of premature imperfections, with a few months of prosthesis use. The manufacture of these components is made in prosthetic laboratories and normally involves recasting, using parts of casting alloy and parts of virgin alloy. Therefore, the objective of the present study was to analyze the mechanical properties of a commercial cobalt-chromium alloy of odontological use after successive recasting, searching information to guide the dental prosthesis laboratories in the correct manipulation of the cobalt-chromium alloy in the process of casting and the possible limits of recasting in the mechanical properties of this material. Seven sample groups were confectioned, each one containing five test bodies, divided in the following way: G1: casting only with virgin alloy; G2: casting with 50% of the alloy of the G1 + 50% of virgin alloy; G3: casting with 50% of the alloy of the G2 + 50% of virgin alloy; G4: casting with 50% of the alloy of the G3 + 50% of virgin alloy; G5: 50% of alloy of the G4 + 50% of virgin alloy; G6: 50% of alloy of the G5 + 50% of virgin alloy and finally the G7, only with recasting alloy. The modifications in the mechanical behavior of the alloy were evaluated. Moreover, it was carried the micro structural characterization of the material by optic and electronic scanning microscopy, and X ray diffraction.and fluorescence looking into the correlatation of the mechanical alterations with structural modifications of the material caused by successive recasting process. Generally the results showed alterations in the fracture energy of the alloy after successive recasting, resulting mainly of the increasing presence of pores and large voids, characteristic of the casting material. Thus, the interpretation of the results showed that the material did not reveal significant differences with respect to the tensile strength or elastic limit, as a function of successive recasting. The elastic modulus increased from the third recasting cycle on, indicating that the material can be recast only twice. The fracture energy of the material decreased, as the number of recasting cycles increased. With respect to the microhardness, the statistical analyses showedno significant differences. Electronic scanning microscopy revealed the presence of imperfections and defects, resulting of the recasting process. X ray diffraction and fluorescence did not show alterations in the composition of the alloy or the formation of crystalline phases between the analyzed groups. The optical micrographs showed an increasing number of voids and porosity as the material was recast. Therefore, the general conclusion of this study is that the successive recasting of of Co-Cr alloys affects the mechanical properties of the material, consequently leading to the failure of the prosthetic work. Based on the results, the best recommendadition is that the use of the material should be limited to two recasting cycles
Resumo:
Metal-Ceramic (M/C) Zirconia-stainless steel interfaces have been processed through brazing techniques due to the excellent combination of properties such as high temperature stability, high corrosion resistance and good mechanical properties. However, some M/C interfaces show some defects, like porosity and cracks results in the degradation of the interfaces, leading even to its total rupture. Most of time, those defects are associated with an improper brazing parameters selection to the M/C system. In this work, ZrO2 Y-TZP and ZrO2 Mg - PSZ were joint with the stainless steel grade 304 by brazing using a eutectic silver-copper (Ag28Cu) interlayer alloy with different thermal cycles. Ceramic surfaces were previous mechanically metallized with titanium to improve adhesion of the system. The effect of temperature on the M/C interface was studied. SEM-EDS and 3 point flexural bend test were performed to evaluate morphology, chemical composition and mechanical resistance of the M/C interfaces. Lower thermal cycle temperatures produced better results of mechanical resistance, and more regular/ homogeneous reaction layers between braze alloy and metal-ceramic surfaces. Also was proved the AgCu braze alloy activation in situ by titanium
Resumo:
As most current studies, reinforced plastics have been, in recent years, a viable alternative in building structural elements of medium and large, since the lightness accompanied by high performance possible. The design of hybrid polymer composites (combination of different types of reinforcements) may enable structural applications thereof, facing the most severe service conditions. Within this class of composite materials, reinforced the underlying tissues hybrid high performance are taking space when your application requires high load bearing and high rigidity. The objective of this research work is to study the challenges in designing these fabrics bring these materials as to its mechanical characterization and fracture mechanisms involved. Some parameters associated with the process and / or form of hybridization stand out as influential factors in the final performance of the material such as the presence of anisotropy, so the fabric weave, the process of making the same, normative geometry of the specimens, among others. This sense, four laminates were developed based hybrid reinforcement fabrics involving AS4 carbon fiber, kevlar and glass 49-E as the matrix epoxy vinyl ester resin (DERAKANE 411-350). All laminates were formed each with four layers of reinforcements. Depending on the hybrid fabric, all the influencing factors mentioned above have been studied for laminates. All laminates were manufactured industrially used being the lamination process manual (hand-lay-up). All mechanical characterization and study of the mechanism of fracture (fracture mechanics) was developed for laminates subjected to uniaxial tensile test, bending in three and uniaxial compression. The analysis of fracture mechanisms were held involving the macroscopic, optical microscopy and scanning electron microscopy